Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi d là ước chung lớn nhất của 2n + 5 và n+3
<=> 2n+5 \(⋮\)d và n+3 \(⋮\)d
mà 2n+5 \(⋮\)d => 2(n+3) \(⋮\)d <=> 2n+6\(⋮\)d
2n+6-(2n+5) = 1 \(⋮\)d
=> d =1
=> \(\frac{2n+5}{n+3}\)là phân số tối giản
Gọi n là ƯC ( n + 1 ; 2n + 1 ) và n E N*
Suy ra n + 1 chia hết cho n
2n + 1 chia hết cho n
Vậy 2n + 2 chia hết cho n
2n + 1 chia hết cho n
nên (2n + 2) - (2n + 1) chia hết cho n
= 2n + 2 - 2n - 1 chia hết cho n
= 1 chia hết cho n suy ra n = 1
Vậy n + 1 và 2n + 1 là nguyên tố cùng nhau
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản
Gọi d là UCLN(n+1 ; 2n+1 )
\(\Rightarrow n+1⋮d\)và \(2n+1⋮d\)
\(\Rightarrow2.\left(n+1\right)⋮d\)hay \(2n+2⋮d\)
\(\Rightarrow2n+2-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy d = 1/-1 \(\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ
a, Gọi UCLN(2n+1, 3n+2) là d. Ta có:
2n+1 chia hết cho d=> 6n+3 chia hết cho d
3n+2 chia hết cho d=> 6n+4 chia hết cho d
=> 6n+4 - (6n+3) chia hết cho d
=> 1 chia hết cho d
=>ƯCLN(2n+1,3n+2)=1
=>\(\frac{2n+1}{3n+2}\)tối giản(đpcm)
Gọi d là (2n+5;3n+7)
\(\Rightarrow\hept{\begin{cases}2n+5⋮d\\3n+7⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}3\left(2n+5\right)⋮d\\2\left(3n+7\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}6n+15⋮d\\6n+14⋮d\end{cases}}\)
=> [6n+15 - ( 6n+14 )] \(⋮\) d
=> 1 \(⋮\)d
=> phân số trên tối giản
Gọi UCLN(2n+1,4n+6)=d
Ta có:2n+1 chia hết cho d
4n+6 chia hết cho d
=>2(2n+1) chia hết cho d
4n+6 chia hết cho d
=>4n+2 chia hết cho d
4n+6 chia hết cho d
=>(4n+6)-(4n+2) chia hết cho d
=>4 chia hết cho d
=>d={1,2,4}
Mà 4n+6 không chia hết cho 4
=>d={1,2}
Mà 2n+1 không chia hết cho 2
=>d=1
Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản
Gọi d là ƯCLN(15n+1,3n+1)
Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d
Hay (15n+1-3n+1) chia hết cho d
Hay 12 chia hết cho d
Hay d thuộc ước của 12
Ư(12)={1;2;3;4;6;12}
Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.
Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.
Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.
Kết luận:đề bài sai.
tk mình nha, mình rõ nhất
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
Gọi ƯCLN(2n+3;3n+5)=d
Ta có:
2n+3 chia hết cho d=> 3(2n+3) chia hết cho d=>6n+9 chia hết cho d
3n+5 chia hết cho d=>2(3n+5) chia hét cho d=>6n+10 chia hết cho d
=>(6n+10)-(6n+9) chia hết cho d
=> 6n+10-6n-9 chia hết cho d
=> 1 chia hết cho d
mà d lớn nhất
=> d=1 (ĐPCM) ( vì d=1 nên 2n+3/3n+5=1, là phân số tối giản)
k cho mk nha!