Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : abcabc = 1000abc + abc = 1001abc chia hết cho 7
=> điều phải chứng minh
Chứng tỏ rằng : abcabc chia hết cho 11, 13, 7.
Giải
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11; 13.
nha bạn :3
a) aaaaaa = a . 111111 = a .15873 . 7 = ( a . 15873 ) . 7 chia hết cho 7
Vậy aaaaaa luôc chia hết cho 7
b)abcabc = abc . 1001 = abc . 91.11=( abc . 91 ) . 11 chia hết cho 11
Vậy abcabc bao giờ cũng chia hết cho 11
abcabc + abcabc
Mk sẽ xét 1 cái nha vì hai số đều giống nhau
\(abcabc\)
\(=abc000+abc\)
\(=abc\cdot1000+abc\cdot1\)
\(=abc\cdot\left(1000+1\right)\)
\(=abc\cdot1001\)
\(1001=7\cdot11\cdot13\)
\(\Rightarrow abc\cdot1001=abc\cdot7\cdot11\cdot13⋮\left(11;13\right)\left(đpcm\right)\)
abc abc=abc.1000+abc=abc.(1000+1)
=abc.1001=abc.91.11
vì 11 chia hết cho 11=>abc.91.11 chia hết cho 11
vậy số abcabc lúc nào cũng chia hết cho 11
\(\overline{abcabc}=\overline{abc}.1001=\overline{abc}.91.11\)
\(\Rightarrow\overline{abcabc}⋮11\)
Vậy số có dạng \(\overline{abcabc}\)bao giờ cũng chia hết cho 11
abcabc=abc.1001=abc.143.7 chia hết cho 7
=> abcabc chia hết cho 7