K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2023

Hiển nhiên \(P=4^{2010}+2^{2014}⋮2\). Ta chỉ cần chứng minh \(P⋮5\) là xong.

Trước hết ta chứng minh \(A=4^{2n}-1⋮5\), với mọi \(n\inℕ\)     (*)

 Với \(n=0\) thì \(A=0⋮5\). Với \(n=1\) thì \(A=15⋮5\).

 Giả sử (*) đúng đến \(n=k\). Với \(n=k+1\), ta có:

 \(A=4^{2\left(k+1\right)}-1\) \(=16.4^{2k}-1\) \(=16\left(4^{2k}-1\right)+15⋮5\), vậy (*) được chứng minh. Do đó \(4^{2010}-1⋮5\)              (1)

 Bây giờ ta sẽ chứng minh \(B=2^{4n+2}+1⋮5\) với mọi \(n\inℕ\).     (**)

 Với \(n=0\) thì \(B=5⋮5\). Với \(n=1\) thì \(B=65⋮5\).

 Giả sử (**) đúng đến \(n=k\). Với \(n=k+1\)  thì

 \(B=2^{4\left(k+1\right)+2}+1\) \(=16.2^{4k+2}+1\) \(=16\left(2^{4k+2}+1\right)-15⋮5\)

 Vậy (**) được chứng minh. Do đó \(2^{2014}+1⋮5\)         (2)

 Từ (1) và (2), suy ra \(P=4^{2010}+2^{2014}=\left(4^{2010}-1\right)+\left(2^{2014}+1\right)⋮5\)

 Như vậy \(2|P,5|P\Rightarrow10|P\) (đpcm)

11 tháng 12 2015

=88-165

=224-220

=220.[24-1]

=220​.15 chia hết cho 15

Vậy 88-165 chia hết cho 15

b,

=105-253

=55.25-56

=55.[25-5]

=55.27 chia hết cho 27

Vậy 105-253​ chia hết cho 27

 

 

 

15 tháng 3 2017

a/ Ta có: aabb = a.1000+a.100+b.10+b

                     = a. (1000+100) + b. (10+1)

                     = 1100.a + 11.b

Vì \(1100⋮11\)\(\Rightarrow\)\(a1100⋮11\)

\(\Rightarrow\)\(1100.a+11.b⋮11\)

Mình chỉ biết làm câu a thôi :P

22 tháng 9 2017

a/ Ta có :

\(9^{1945}-2^{1930}=\left(9^5\right)^{389}-\left(2^{10}\right)^{193}=\left(.....9\right)-\left(.....4\right)=\left(............5\right)⋮5\)

\(\Leftrightarrowđpcm\)

5 tháng 7 2016

khó ghê , bài này đẳng cấp ghê

giả sử a chia hết cho 5

=>a2 chia hết cho 5

=>a2-1 không chia hết cho 5

nếu a2-1 chia hết cho 5

=>a2 đồng dư với 1(mod 5)

=>a đồng dư với -1 hoặc 1(mod 5)

=>a có tận cùng là 4;6;1;9 

=>đpcm

^-^