K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2022

Gọi \(x\)là \(\text{Ư}CLN\left(2n+1,2n+3\right)\left(x\in Z\right)\)

ta có \(\left(2n+1\right)⋮x\\ \left(2n+3\right)⋮x\\ \Rightarrow\left[\left(2n+3\right)-\left(2n+1\right)\right]⋮x\\ \Rightarrow\left(2n+3-2n-1\right)⋮x\\ \Rightarrow\left(3-1\right)⋮x\\ \Rightarrow2⋮x\\ \Rightarrow x\in\text{Ư}\left(2\right)=\left\{-1;1;-2;2\right\}\)

Vì \(\left(2n+1\right);\left(2n+3\right)l\text{ẻ}\\ \Rightarrow x=\pm1\)

Vậy 2n+1/ 2n+3 tối giản

 

Chứng minh phân số sau tối giản với mọi n: 2n + 1 / 2n +3
                                           giải
gọi d thuộc ƯC ( 2n + 1 , 2n + 3 )
=> 2n + 1 chia hết cho d hoặc 2n + 3 chia hết cho d 
=> ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
=> 2n + 3 - 2n - 1 chia hết cho d
=> 2 chia hết cho d
=> d thuộc Ư ( 2 ) 
vì 2n + 1 và 2n + 3 đều là số lẻ nên ko thể có ước = 2
=> ƯCLN ( 2n + 1 , 2n + 3 ) = 1
vậy phân số sau là phân số tối giản

26 tháng 2 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó n + 1 chai hết cho d ; 2n + 3 chia hết cho d

<=> 2n + 2 chia hết cho d  ; 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chai hết cho d

=> 1 chia hết cho d

=> d = 1 

Vậy p/s n + 1/2n + 3 tối giản vs mọi n thuộc N

29 tháng 4 2019

Đặt \(\left(4n+12,2n+5\right)=d\)

\(\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left(2n+5\right)⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(4n+12\right)⋮d\\\left[2\left(2n+5\right)\right]⋮d\end{cases}}\)

\(\Leftrightarrow\left[\left(4n+12\right)-2\left(2n+5\right)\right]⋮d\)

\(\Leftrightarrow\left[4n+12-4n-10\right]⋮d\)

\(\Leftrightarrow2⋮d\Leftrightarrow\orbr{\begin{cases}d=2\\d=1\end{cases}}\)

Dễ thấy \(\left(2n+5\right)\) không chia hết cho 2 \(\Rightarrow d=1\)

Vậy \(\left(4n+12,2n+5\right)=1\)​ hay \(\frac{4n+12}{2n+5}\) tối giản với mọi n.

28 tháng 2 2017

Chứng tỏ các phân số sau tối giản với mọi n thuộc N

a,n+3/n+4

Để phân số \(\dfrac{n+3}{n+4}\) tối giản thì [n+3;(n+4)] là hai số nguyên tố cùng nhau thì:

[n+3;(n+4)]=1

Gọi d là ước chung lớn nhất[n+3;(n+4)]

\(\Rightarrow\) [n+3;(n+4)]=d

\(\Rightarrow\) n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d\(\Rightarrow\)n+3\(⋮\)d

\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d\(\Rightarrow\)n+4\(⋮\)d

\(\Rightarrow\) [n+4;(n+3)]\(⋮\)d\(\Rightarrow\)[n+4-n-3]\(⋮\)d=>-1\(⋮\)d=>d=1

Nên n+4;n+3 là hai số nguyên tố cùng nhau

Vậy \(\dfrac{n+3}{n+4}\) là phân số tối giản


31 tháng 3 2016

a) Gọi d= ƯCLN (n+1;2n+3)

Ta có: n+1 chia hết cho d hay 2n+2 chia hết cho d

2n+3 chia hết cho d

suy ra: (2n+3)-(2n+2) chai hết cho d

hay: 1 chia hết cho d

suy ra: d=1

vậy n+1 / 2n+3 là p/s tối giản với mọi n thuộc N

b) Gọi d= ƯCLN ( 2n+3; 4n+8)

Ta có: 2n+3 chia hết cho d hay 4n+6 chia hết cho d

4n+8 chia hét cho d

suy ra : (4n+8)-(4n+6) chia hết cho d

hay: 2 chia hết cho d

suy ra: d=1;2

Nếu d=2 thì 2n+3 chia hết cho 2

hay: 3 chia hết cho 2

Vậy d=1 

suy ra : 2n+3 / 4n+8 là p/s tối giản với mọi n thuộc N

ai t ick mk mk t ick lại

28 tháng 3 2018

Gọi d là ƯCLN của 2n + 1 và 3 n + 2

Ta có

2n+1 chia hết cho d => 3 ( 2n+1) chia hết cho d => 6n +3 chia hết cho d (1)

3n + 1 chia hết cho d => 2(3n+1) chia hết cho d => 6n + 4 Chia hết cho d ( 2 )

Từ (1), (2)

=> 6n+4 - 6n - 3 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=>  ƯCLN ( 2n + 1 : 3n + 2 ) = 1

=>  Phân số 2n+1/3n+2 tối giản với mọi n thuộc Z 

28 tháng 3 2018

Phương pháp chứng minh 1 p/s tối giản là :

Chứng minh ƯCLN của tử và mẫu = 1

Còn cách làm : Tự làm

10 tháng 2 2019

giúp mình vs nha