K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)

\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)

...

\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

Cộng các bất đẳng thức trên lại với nhau, ta được:

\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)

\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)

\(\Leftrightarrow A>4\)(đpcm)

7 tháng 6 2019

với n >0, ta có :

\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=n+1-n=1\Rightarrow\frac{1}{\sqrt{n+1}-\sqrt{n}}=\sqrt{n+1}+\sqrt{n}\)

Gọi biểu thức đã cho là A

\(A=\frac{1}{-\left(\sqrt{2}-\sqrt{1}\right)}-\frac{1}{-\left(\sqrt{3}-\sqrt{2}\right)}+...+\frac{1}{-\left(\sqrt{8}-\sqrt{7}\right)}-\frac{1}{-\left(\sqrt{9}-\sqrt{8}\right)}\)

\(A=-\frac{1}{\sqrt{2}-\sqrt{1}}+\frac{1}{\sqrt{3}-\sqrt{2}}-...-\frac{1}{\sqrt{8}-\sqrt{7}}+\frac{1}{\sqrt{9}-\sqrt{8}}\)

\(A=-\left(\sqrt{2}+\sqrt{1}\right)+\left(\sqrt{3}+\sqrt{2}\right)-...-\left(\sqrt{8}+\sqrt{7}\right)+\left(\sqrt{9}+\sqrt{8}\right)\)

\(A=-\sqrt{1}+\sqrt{9}=2\)

7 tháng 6 2019

\(\frac{1}{\sqrt{n}-\sqrt{n+1}}=\frac{\sqrt{n}+\sqrt{n+1}}{\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n}-\sqrt{n+1}\right)}=-\sqrt{n}-\sqrt{n+1}\)

30 tháng 8 2016

Phân tích mỗi hạng tử theo kiểu như dưới đây

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}\right)^2-\left(\sqrt{2}\right)^2}\)

\(\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}\right)^2-\left(\sqrt{3}\right)^2}\)

Khi đó mọi mẫu đều bằng -1

Bạn tiếp tục làm và kết quả nhận được là \(1-\sqrt{9}\)

NV
1 tháng 7 2019

Nhân cả tử và mẫu với biểu thức liên hợp của mẫu (câu a mẫu cuối kì kì)

\(A=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+\frac{1}{4}=\sqrt{3}-\frac{3}{4}\)

\(B=-\left(\sqrt{1}+\sqrt{2}-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-...+\sqrt{7}+\sqrt{8}-\sqrt{8}-\sqrt{9}\right)\)

\(B=-\left(\sqrt{1}-\sqrt{9}\right)=2\)

27 tháng 6 2019

\(\frac{1}{\sqrt{1}+\sqrt{2}}+....\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\) (40 số)

................................................................\(>\frac{40}{10}=4\) 

=>đpcm

hc tốt

ko chắc lắm :)

20 tháng 4 2020

dhasuxbhfc;CX