K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2021

Gọi Ư( 7n + 10 ; 5n + 7 ) = d ( d \(\in\)N* ) 

Ta có : \(7n+10=35n+50\)(*) 

\(5n+7=35n+49\)(**)

Lấy (*) - (**) ta được : \(35n+50-35n-49⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy ta có ddpcm 

tương tự với các bài sau nhé 

30 tháng 7 2021

thanks bn nha

20 tháng 3 2017

1.c)1. Xét n chẵn, hai số đều chẵn không nguyên tố cùng nhau
2.2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
\(9n+24=3\left(3n+8\right)\)
\(3n+4⋮̸3\), nên ta xét tiếp \(3n+8\)
Giả sử \(k\) là ước số của\(3n+ 8\)\(3n+4\), đương nhiên\(k\) lẻ\(\left(1\right)\)
\(\rightarrow k\) cũng là ước số của \(\left(3n+8\right)-\left(3n+ 4\right)=4\rightarrow k\)chẵn\(\left(2\right)\)
Từ\(\left(1\right)\)\(\left(2\right)\) \(\Rightarrow\) Mâu thuẫn
Vậy với \(n\) lẻ, \(2\) số đã cho luôn luôn nguyên tố cùng nhau.

29 tháng 8 2017

1. Xét n chẵn, hai số đều chẵn => ko nguyên tố cùng nhau
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau
9n+24 = 3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a)
=> k cũng là ước số của (3n+8)-(3n+4) = 4 => k chẵn (b)
Từ (a) và (b) => Mâu thuẫn
Vậy với n lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

13 tháng 3 2017

số nguyên dương n là 2

13 tháng 11 2017

Câu hỏi tương tự nha

13 tháng 11 2017

1.c)1. Xét n chẵn, hai số đều chẵn → không nguyên tố cùng nhau 
2. Xét n lẻ, ta chứng minh 2 số này luôn nguyên tố cùng nhau 
9n+24=3(3n+8)
Vì 3n+4 không chia hết cho 3, nên ta xét tiếp 3n+8 
Giả sử k là ước số của 3n+8 và 3n+4, đương nhiên k lẻ (a) 
→k cũng là ước số của (3n+8)−(3n+4)=4 ->chẵn (b)
Từ (a) và (b)→ Mâu thuẫn 
Vậy với nn lẻ, 2 số đã cho luôn luôn nguyên tố cùng nhau

Bài 6 : Lớp 6A có 54 học sinh , lớp 6B có 42 học sinh , lớp 6C có 48 học sinh . Trong ngày khai giảng , 3 lớp cùng xếp thành 1 số hàng dọc như nhau để diễu hành mà không có lớp nào có người lẻ hàng . Tính số hàng dọc nhiều nhất có thể xếp được ? Khi đó mỗi lớp có bao nhiêu hàng ngang ? Bài 7: Tìm số có ba chữ số nhỏ nhất biết rằng đem chia số đó cho 20 ; 25 ; 30 đều có cùng số dư là...
Đọc tiếp

Bài 6 : Lớp 6A có 54 học sinh , lớp 6B có 42 học sinh , lớp 6C có 48 học sinh . Trong ngày khai giảng , 3 lớp cùng xếp thành 1 số hàng dọc như nhau để diễu hành mà không có lớp nào có người lẻ hàng . Tính số hàng dọc nhiều nhất có thể xếp được ? Khi đó mỗi lớp có bao nhiêu hàng ngang ? 

Bài 7: Tìm số có ba chữ số nhỏ nhất biết rằng đem chia số đó cho 20 ; 25 ; 30 đều có cùng số dư là 15 

Bài 8: Tìm ƯC của n+3 và 2n + 5 vói n∈ N

Bài 9: Cho 3n+1 và 5n + 4 ( n thuộc N ) . Tìm ƯCLN ( 3n + 1 ; 5n + 4 )

Bài 10: Tìm hai số tự nhiên a,b biết ( a > b ) 

  1) a + b = 224 và ƯCLN (a,b) = 28 

  2) BCNN (a,b) = 300 và ƯCLN(a,b) = 15 

  3) a.b+ 2940 và BCNN(a,b) = 210 

Bài 11:

 1) CMR : Hai số 2n + 1 và 6n+5 là hai số nguyên tố cùng nhau ∀n ∈ N.

 2) Chứng tỏ rằng: Hai số tự nhiên lẻ liên tiếp bất kì nguyên tố cùng nhau

Bài 12: Tìm cặp số nguyên a,y thỏa mãn : 

a) (x - 3 ) . ( y+1) = 5 

b) x(y - 1 ) = 10 

c) ( x + 3 ) ( y + 2 ) = 1 

d) ( x - 1 ) ( x + y ) = 9 

1
7 tháng 1 2016

Bài 6 :

Số hàng dọc nhiều nhất là : 6 hàng

Lớp 6a có 9 hàng ngang. 

Lớp 6b có 7 hàng ngang. 

Lớp 6c có 8 hàng ngang. 

Bài 7 : 

Số 315

Bài 8 :

ƯCLN(n+3,2n+5) = 1

Bài 9 :

ƯCLN(3n+1,5n+4) = 1

Bài 10 :

1) a = 228 , b = 28

    a = 112 , b = 56