Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1,2 dễ nha
Bài 3 : \(A=\frac{10^{2016}+9}{21}-\frac{10^{2017}+5}{63}=\frac{3\cdot10^{2016}+12-10\cdot10^{2016}-5}{63}\)
\(=\frac{-7\cdot10^{2016}+7}{63}\)
\(=\frac{1-10^{2016}}{9}⋮9\)
=> A là 1 số nguyên
Bài 4 :
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\)
\(10^{2016}+2\) = 1000.....0000 ( có 2016 số 0 ) + 2
= 1000....002 có 1 + 0 + 0 + ... + 0 + 2 = 3 chia hết cho - 3
=> \(\frac{10^{2016}+2}{-3}\) là số nguyên
b ) tương tự
2. So sánh A và B
b) A = \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{20}\right)\)
A = \(\left(\frac{2}{2}-\frac{1}{2}\right).\left(\frac{3}{3}-\frac{1}{3}\right).\left(\frac{4}{4}-\frac{1}{4}\right).....\left(\frac{20}{20}-\frac{1}{20}\right)\)
A = \(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{18}{19}.\frac{19}{20}\)
A = \(\frac{1.2.3.....19}{2.3.4.....20}\)
A = \(\frac{1}{20}\)
Mà \(\frac{1}{20}\)> \(\frac{1}{21}\)
=> A > B
\(A=\frac{10^{2016}+4}{21}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x\left(10^{2016}+4\right)}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{3x10^{2016}+12}{63}-\frac{10^{2017}+5}{63}\)
\(A=\frac{\left(3x10^{2016}+12\right)-\left(10^{2017}+5\right)}{63}\)
\(A=\frac{3x10^{2016}+12-10^{2017}-5}{63}\)
\(A=\frac{\left(3x10^{2016}-10^{2017}\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(3-10\right)+7}{63}\)
\(A=\frac{10^{2016}x\left(-7\right)+7}{63}\)
\(A=\frac{-10^{2016}x7+7}{63}\)
\(A=\frac{7x\left(-10^{2016}+1\right)}{63}\)
\(A=\frac{7x\left(10^{2016}-1\right)}{63}\)
Vì 1 số và tổng các chữ số của nó có cùng số dư trong phép chia cho 9 mà 102016 có tổng các chữ số là 1
=> 102016 - 1 chia hết cho 9
=> 7 x (102016 - 1) chia hết cho 63
=> 7 x (102016 - 1) / 63 nguyên
=> A nguyên
Chứng tỏ A nguyên
Mình chịu dù mình cũng học lớp 6