K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2019

bn tham khảo link này nha : 

https://olm.vn/hoi-dap/detail/106910076476.html?pos=236246395053

24 tháng 8 2019

\(Ư\left(1000001\right)=1;101;9901;1000001\)

\(\Rightarrow1000001\) là hợp số

AH
Akai Haruma
Giáo viên
10 tháng 8 2021

Lời giải:

a. $4\equiv 1\pmod 3$

$\Rightarrow 4^{20}\equiv 1\pmod 3$

$\Rightarrow 4^{20}-1\equiv 0\pmod 3$

Hay $4^{20}-1\vdots 3$. Mà $4^{20}-1>3$ nên nó là hợp số (đpcm)

b.

$1000001=10^6+1=(10^2)^3+1=(10^2+1)(10^4-10^2+1)$ là hợp số (đpcm)

22 tháng 8 2021

Em ko hiểu ạ.

 

1 tháng 11 2018

Xét 3 số tự nhiên liên tiếp:

8p - 1; 8p; 8p + 1, trong 3 số này có 1 số \(⋮3\)

Do p nguyên tố \(>3\)

\(\Rightarrow p⋮3̸\)

\(\Rightarrow8p⋮3̸\) mà 8p - 1 nguyên tố  \(>3\)

\(\Rightarrow8p-1⋮3̸\)

\(\Rightarrow8p+1⋮3\)

Mà 1 < 3 < 8p + 1 => 8p + 1 là hợp số 

\(\Rightarrowđpcm\)

\(⋮̸\)= không chia hết 

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

Vì $p$ là số nguyên tố lớn hơn $3$ nên $(p,3)=1$. Khi đó $p$ có dạng $3k+1$ hoặc $3k+2$ với $k$ tự nhiên.

Nếu $p=3k+1$ thì: $2p+1=2(3k+1)+1=6k+3\vdots 3$. Mà $2p+1>3$ nên không thể là số nguyên tố (trái với giả thiết - loại) 

Do đó $p=3k+2$.

Khi đó: $4p+1=4(3k+2)+1=12k+9=3(4k+3)\vdots 3$. Mà $4p+1>3$ nên $4p+1$ là hợp số (đpcm)