K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2018

Biến đổi vế trái ta có :

\(VT=\frac{1}{1}+\frac{1}{3}+...+\frac{1}{199}+\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)-\) \(2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}+\frac{1}{101}+...+\frac{1}{200}-\) \(1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\) \(=VP\RightarrowĐPCM\)

20 tháng 4 2018

tớ bt

đâu

11 tháng 3 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{102}\) (đpcm)

13 tháng 4 2019

Tham khảo ở link này bạn nhé :

https://olm.vn/hoi-dap/detail/5631756599.html

~ Study well ~

6 tháng 5 2016

Bạn tham khảo tại Câu hỏi của lê chí dũng - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath

Chúc bạn học tốt!hihi

6 tháng 5 2016

Tks bạn nhé Nguyễn Thế Bảo

20 tháng 3 2017

HA ~~! Vẫn còn bài này !

1/101>1/150 
1/102>1/150 
1/103>1/150 
.... 
1/150=1/150 
Tất cả có 50 dữ kiện 
Vậy 1/101+1/102+...+1/150>50/150=1/3 (1) 

Tiếp theo 
1/151>1/200 
1/152>1/200 
... 
1/200=1/200 
Tương tự trên, thì :
1/151+......+1/200>50/200=1/4 (2) 

Cộng (1) và (2), thì A>(1/3+1/4)=7/12 \(\left(ĐPCM\right)\).

19 tháng 5 2018

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{199}+\frac{1}{200}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

19 tháng 5 2018

Ta có : 

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{199}-\frac{1}{200}\)

\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{199}+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{199}+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\left(đpcm\right)\)

Chúc bạn học tốt !!! 

27 tháng 6 2015

\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\left(1+\frac{1}{3}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{200}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(=\left(1+\frac{1}{2}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Vậy \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}\)

29 tháng 2 2016

1-1/2+1/3-1/4+...+1/199-1/200

=(1+1/3+...+1/199)-(1/2+1/4+...+1/200)

=(1+1/2+1/3+...+1/199+1/200)-2(1/2+1/4+...+1/200)

=(1+1/2+1/3+...+1/199+1/200)-(1+1/2+...+1/100)

=1/101+1/102+...+1/200 (đpcm)

18 tháng 3 2018

Đặt \(S=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)

\(S=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{199}-\frac{1}{200}\)

\(S=\left(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{200}\right)\)

\(S=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{200}\right)-\left(1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(S=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)

Ta có đpcm

18 tháng 3 2018

Bạn Trí làm sai rồi!

Đề bài không yêu cầu chứng minh như bạn