K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2022

 

loading...

Vì đây là 7 số nguyên liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 5040

=>A chia hết cho 210

16 tháng 11 2022

loading...

Vì đây là 7 số liên tiếp

nên A chia hết cho 7!

=>A chia hết cho 210

20 tháng 10 2018

Ta có:

\(A=n^3\left(n^2-7\right)^2-36n\)

\(A=n^3\left(n^4-14n^2+49\right)-36n\)

\(A=n^7-14n^5+49n^3-36n\)

\(A=n^7+12n^5+36n^3-25n^5-n^5-12n^3-36n+25n^3\)

\(A=n^3\left(n^4+12n^2+36-25n^2\right)-n\left(n^4+12n^2+36-25n^2\right)\)

\(A=\left(n^3-n\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n^2-1\right)\left(n^4+12n^2+36-25n^2\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left[\left(n^2+6\right)^2-\left(5n\right)^2\right]\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n^2-5n+6\right)\left(n^2+5n+6\right)\)

\(A=n\left(n-1\right)\left(n+1\right)\left(n-3\right)\left(n-2\right)\left(n+2\right)\left(n+3\right)\)

\(A=\left(n-3\right)\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮7\)

*Tích 7 số nguyên liên tiếp chia hết cho 7.

24 tháng 6 2017

Đề sai rồi b

26 tháng 6 2017

Không sai đâu bạn

1 tháng 12 2017

\(n\left(n+2\right)\left(25n^2-1\right)=n\left(n+2\right)24n^2+n\left(n+2\right)\left(n^2-1\right)\)

\(=24n^3\left(n+2\right)+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)

thành phần 24n3(n+2) chia hết cho 24.

thành phần sau là tích của 4 số tn liên tiếp nên trong 4 số thì phải có 1 số chia hết cho 3, có 2 số chẵn trong đó 1 số chẵn chia hết cho 4 (vì trong 4 số tn liên tiếp thì có 1 số chia hết cho 4) và một số chẵn còn lại chia hết cho 2 vậy tích 4 số chia hết cho 3x4x2=24.

=>(đpcm)

30 tháng 11 2017

   \(n.\left(n+2\right)\left(25^2-1\right)\)

\(=n.\left(n+2\right).\left(25-1\right)\left(25+1\right)\)

\(=n.\left(n+2\right).26.24\)

\(\Rightarrow n.\left(n+2\right).26.24⋮24\)\(\forall n\in N\)

30 tháng 11 2017

mình ghi nhầm đúng hơn là : \(n\left(n+2\right)\left(25n^2-1\right)\) giải jum mình nhé

26 tháng 10 2022

\(=n\left(n^3-7n-36\right)\)

\(=n\left(n^3-4n^2+4n^2-16n+9n-36\right)\)

\(=n\left(n-4\right)\left(n^2+4n+9\right)\)

TH1: n=7k

\(A=7k\left(7k-4\right)\cdot B⋮7\)

TH2: n=7k+1

\(A=\left(7k+1\right)\left(7k-3\right)\left(49k^2-14k+1+28k+4+9\right)\)

\(=\left(7k+1\right)\left(7k-3\right)\left(49k^2+14k+14\right)⋮7\)

TH3: n=7k+2

\(A=\left(7k+2\right)\left(7k-2\right)\left(49k^2+28k+4+28k+8+9\right)\)

\(=C\cdot\left(49k^2+56k+14\right)⋮7\)

Nếu n=10 thì A ko chia hết cho 7 nha bạn