Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM-GM ta có:
\(\left(\frac{12}{5}\right)^x+\left(\frac{15}{4}\right)^x\ge2\sqrt{9^x}=2\cdot3^x\)
\(\left(\frac{15}{4}\right)^x+\left(\frac{20}{3}\right)^x\ge2\sqrt{25^x}=2\cdot5^x\)
\(\left(\frac{20}{3}\right)^x+\left(\frac{12}{5}\right)^x\ge2\sqrt{16^x}=2\cdot4^x\)
Cộng theo vế ta có: \(2VT\ge2VP\Leftrightarrow VT\ge VP\)
\(\Rightarrow\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+4\right)}+\frac{1}{\left(x+4\right)\left(x+5\right)}=\frac{1}{6}\)
ĐK:\(x\ne-2;-3;-4;-5\)
MTC:\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right).6\)
Quy đồng khử mẫu:
áp dụng bđt svacxơ, ta có
\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)
dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)
nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)
,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)
từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)
Đk x khác -2;-3;-4;-5
pt <=> 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) = 1/6
<=> 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 = 1/6
<=> 1/x+2 - 1/x+5 = 1/6
<=> x+5-x-2/(x+2).(x+5) = 1/6
<=> 3/(x+2).(x+5) = 1/6
<=> (x+2).(x+5) = 3 : 1/6 = 18
<=> x^2+7x+10 = 18
<=> x^2+7x-8=0
<=> (x-1).(x+8) = 0
<=> x1=0 hoặc x+8=0
<=> x=1 hoặc x=-8
k mk nha
Ta có
N=x^5/120+x^4/12+7x^3/24+5x^2/12+x/5
N = ( x^5 + 10x^4 + 35x^3 + 50x^2 + 24x)/120
N = x( x^4 + 10x^3 + 35x^2 + 50x + 24)/120
N = x( x^4 + x^3 + 9x^3 + 9x^2 + 26x^2 + 26x + 24x + 24)/120
N = x(x +1)(x^3 + 9x^2 + 26x + 24)/120
N = x(x +1)(x^3+ 2x^2 + 7x^2 + 14x + 12x + 24)/120
N = x(x+1)(x+2)(x^2 + 7x + 12)/120
N = x(x +1)(x+2)(x+3)(x+4)/120
N có tử số là tích của 5 số tự nhiên liên tiếp
-> N chia hết cho 5, 3
trong 5 số tự nhiên liên tiếp có một số chia hết cho 4 và một số chia hết cho 2
-> N chia hết cho 4x2 = 8
Vậy N chia hết cho 3x5x8 = 120
Vậy N luôn là số tự nhiên với mọi số tự nhiên x
Ben xem thế này có đúng ko nha
P = x^5/120 + x^4/12 + 7x³/24 + 5x²/12 + x/5
= x(x^4/120 + x³/12 + 7x²/24 + 5x/12 + 1/5)
= x(x^4 + 10x³ + 35x² + 50x + 24)/120
Xét: x(x^4 + 10x³ + 35x² + 50x + 24)
= x(x + 1)(x + 2)(x + 3)(x + 4)
--
Trước hết ta chứng minh x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x chia hết cho 2 => x + 2 và x + 4 cũng chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
* Nếu x lẻ => x = 2k + 1
=> x + 1 = 2k + 2 và x + 3 = 2k + 4
Dễ dàng chứng minh một trong hai số x + 1 và x + 3 có một số chia hết cho 2 và một số chia hết cho 4
Thật vậy:
► Nếu k lẻ thì
x + 1 = 2k + 2 = 2(2m + 1) + 2 = 4m + 4 chia hết cho 4
x + 3 = 2k + 4 = 2(2m + 1) + 4 = 4m + 6 chia hết cho 2
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
► Nếu n chẵn thì:
x + 1 = 2k + 2 = 4m + 2 chia hết cho 2
x + 3 = 2k + 4 = 4m + 4 chia hết cho 4
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8
Tóm lại ta có
x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho 8 với mọi x là số tự nhiên (1)
---
Mặt khác x(x + 1)(x + 2)(x + 3)(x + 4) là tích 5 số tự nhiên liên tiếp nên tồn tại một số chia hết cho 3 và một số chia hết cho 5
=> x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5 với mọi x là số tự nhiên (2)
----
Từ (1) và (2) cho ta
x(x + 1)(x + 2)(x + 3)(x + 4) vừa chia hết cho 3 vừa chia hết cho 5, vừa chia hết cho 8 với mọi x là số tự nhiên
mà (3 , 5, 8) là bộ 3 số nguyên tố cùng nhau
=> x(x + 1)(x + 2)(x + 3)(x + 4) chia hết cho tích 3.5.8 = 120
Vậy P = x(x^4 + 10x³ + 35x² + 50x + 24)/120 là một số tự nhiên.