K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)

\(=\frac{a^3+3a^2+2a}{6}=\frac{a^3+2a^2+a^2+2a}{6}\)

\(=\frac{a^2.\left(a+2\right)+a.\left(a+2\right)}{6}=\frac{\left(a+2\right).\left(a^2+a\right)}{6}=\frac{\left(a+2\right).a.\left(a+1\right)}{6}\)

Vì a.(a+1).(a+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và ;mà (2;3)=1

=>a.(a+1).(a+2) chia hết cho 6

\(=>\frac{a.\left(a+1\right).\left(a+2\right)}{6}\in Z\left(a\in Z\right)\) (đpcm)

10 tháng 10 2018

\(\left(2n+3\right)^2-9=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4\right)^2-4^2=\left(3n+4-4\right)\left(3n+4+4\right)=3n\left(3n+8\right)⋮3\)

10 tháng 10 2018

a) ta có: (2n+3)2 - 9

= 4n2 +12n + 9 - 9

= 4n.(n+3) chia hết cho 4

=> ...

b) ta có: (3n+4)2 - 16

= 9n2 + 24n + 16 - 16

= 3n.(3n + 8)  chia hết cho 3

=> ...

13 tháng 12 2018

ĐKXĐ bạn tự xét nhé

\(M=\left(1+\frac{a}{a^2+1}\right):\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)

\(M=\left(\frac{a^2+1}{a^2+1}+\frac{a}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{a^2\left(a-1\right)+\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2+1}{\left(a^2+1\right)\left(a-1\right)}-\frac{2a}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{a^2-2a+1}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\left(\frac{a^2+a+1}{a^2+1}\right):\left(\frac{\left(a-1\right)^2}{\left(a^2+1\right)\left(a-1\right)}\right)\)

\(M=\frac{\left(a^2+a+1\right)\left(a^2+1\right)\left(a-1\right)}{\left(a^2+1\right)\left(a-1\right)^2}\)

\(M=\frac{a^2+a+1}{a-1}\)

Để M thuộc Z thì \(a^2+a+1⋮a-1\)

\(\Leftrightarrow a^2-a+2a-2+3⋮a-1\)

\(\Leftrightarrow a\left(a-1\right)+2\left(a-1\right)+3⋮a-1\)

\(\Leftrightarrow\left(a-1\right)\left(a+2\right)+3⋮a-1\)

Mà \(\left(a-1\right)\left(a+2\right)⋮a-1\)

\(\Rightarrow3⋮a-1\)

\(\Rightarrow a-1\inƯ\left(3\right)=\left\{1;3;-1;-3\right\}\)

\(\Rightarrow a\in\left\{2;4;0;-2\right\}\)

Để M = 7 thì :

\(\frac{a^2+a+1}{a-1}=7\)

\(\Leftrightarrow a^2+a+1=7\left(a-1\right)\)

\(\Leftrightarrow a^2+a+1=7a-7\)

\(\Leftrightarrow a^2-6a+8=0\)

\(\Leftrightarrow a^2-2a-4a+8=0\)

\(\Leftrightarrow a\left(a-2\right)-4\left(a-2\right)=0\)

\(\Leftrightarrow\left(a-2\right)\left(a-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a-2=0\\a-4=0\end{cases}\Rightarrow\orbr{\begin{cases}a=2\\a=4\end{cases}}}\)

Để M > 0 thì :

\(\frac{a^2+a+1}{a-1}>0\)

Vì \(a^2+a+1>0\forall a\), do đó để M > 0 thì : \(a-1>0\Leftrightarrow a>1\)

13 tháng 12 2018

Chứng minh \(a^2+a+1>0\):

Đặt \(B=a^2+a+1\)

\(B=a^2+2\cdot a\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(B=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(a+\frac{1}{2}\right)^2\ge0\forall a\)

\(\Rightarrow B\ge0+\frac{3}{4}=\frac{3}{4}>0\)

\(\Rightarrow B>0\left(đpcm\right)\)

Dấu "=" xảy ra \(\Leftrightarrow a+\frac{1}{2}=0\Leftrightarrow a=\frac{-1}{2}\)

7 tháng 7 2015

Tử = x4 + (x2 + x + 1)

x4 \(\ge\) 0 với mọi x ; x2 + x + 1 = x2 + 2.x.\(\frac{1}{2}\)\(\frac{1}{4}\) + \(\frac{3}{4}\) = (x + \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0 

=> Tử > 0 với mọi x

+) Mẫu = (x4 - x3 + x2) + (x2 - x + 1) = x2.(x2 - x + 1) +  (x2 - x + 1)  = (x2 + 1). (x2 - x + 1) > 0 với mọi x 

Do x2 + 1 > 0 ;  x2 - x + 1 = (x - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) > 0 

Vậy A > 0 với mọi x