Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/b = c/d => a/c = b/d
=> a 2 / c 2 = b 2 / d 2 = ab / cd
<=> 7a 2 / 7c 2 = 11a 2 / 11c 2 = 8b 2 / 8d 2 = 3ab / 3cd
=> 7a 2 + 3ab / 7c 2 + 3cd = 11a 2 - 8b 2 / 11c 2 - 8d 2
=> 7a 2 + 3ab / 11a 2 - 8b 2 = 7c 2 + 3cd / 11c 2 - 8d 2 (đpcm)
k cho mk nha bn sai đề bài ak
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{7c^2+3cd}{11c^2-8d^2}\)
cho \(\frac{a}{b}=\frac{c}{d}\)Chứng minh
Đọc lại lý thuyết Bài 8 sgk/28
chỉ cần có lý thuyết a=k.b và c=k.d thay vào biểu thức là xong
Cho \(\dfrac{a}{b}\) như thế nào thì mới chứng minh được chứ em
Tải app giải toán và kết bạn trao đổi nào cả nhà: https://www.facebook.com/watch/?v=485078328966618
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\cdot b^2k^2+3\cdot bk\cdot b}{11\cdot b^2\cdot k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\cdot d^2k^2+3dk\cdot d}{11\cdot d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: VT=VP(đpcm)
Đặt a/b = c/d = t => a = bt ; c = dt
Thay vào ta có
\(\frac{7a^2+3ab}{11a^2-8b^2}=\frac{11.\left(bt\right)^2+3bt.b}{11.\left(bt\right)^2-8b^2}=\frac{b^2t\left(11t+3\right)}{b^2\left(11t^2-8\right)}=\frac{11t+3}{11t^2-8}\) (1)
Tương tự thay c = dt vào vế phải ta cũng đc \(\frac{11t+3}{11t^2+8}\) (2)
Từ (1) và (2) => ĐPCM.
Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3\cdot bk\cdot b}{11\cdot b^2k^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3\cdot dk\cdot d}{11d^2k^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Do đó: \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)