K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2016

555222 + 222555 =222555 + 555555 - (555555 - 555222
= 222555 + 555555 - 555222(555333 - 1) 
Ta có :
222555 + 555555 chia hết cho 222 + 555 = 777 chia hết cho 7 (1) 
555333 - 1 = (5553)111 - 1 \(⋮\) 5553 - 1 
Ta có 555 = 7 . 79 + 2 = 7k + 2 (với k = 79) 
5553 - 1 = (7k+2)³ - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 8 - 1 = (7k)³ + 3.(7k)².2 + 3.7k.2² + 7 \(⋮\)
=> 555333 - 1 chia hết cho 7 (2) 
Từ (1) và (2) => 555222 + 222555 chia hết cho 7 (đpcm)

9 tháng 6 2016

Ta có : \(2^{28}-1=\left(2^{14}\right)^2-1\equiv1^2-1\left(mod9\right)\)

Vậy \(2^{28}-1⋮29\).

10 tháng 6 2016

Tài Nguyễn Tuấn bạn có thể giải thích rõ hơn được ko?

15 tháng 1 2017

 a,

n kog chia hết cho 3. Ta có: n = 3k +1 và n = 3k+2

TH1: n2 : 3 <=> (3k+1): 3 = (9k2+6k+1) : 3 => dư 1

TH2: n: 3 <=> (3k+2)2 : 3 = (9k2+12k+4) : 3 = (9k2+12k+3+1) : 3 => dư 1 

các phần sau làm tương tự.

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:

Bổ sung điều kiện $n$ là số tự nhiên khác $0$

Gọi biểu thức trên là $A$. Ta có:
\(7\equiv -1\pmod 4\Rightarrow 7^{2^{4n+1}}\equiv (-1)^{2^{4n+1}}\equiv 1\pmod 4\)

\(4^{3^{4n+1}}\equiv 0\pmod 4\)

\(\Rightarrow A\equiv 1+0-65=-64\equiv 0\pmod 4\)

Vậy $A\vdots 4(*)$

Mặt khác:
Với $n$ là số tự nhiên khác $0$ thì $2^{4n+1}$ chia hết cho $4$ 

$\Rightarrow 7^{2^{4n+1}}=7^{4k}=(7^4)^k\equiv 1\pmod {25}$

$3^{4n+1}=3.81^n\equiv 3\pmod {10}$

$\Rightarrow 3^{4n+1}=10t+3$

$\Rightarrow 4^{3^{4n+1}}=4^{10t+3}=64.(4^{10})^t\equiv 64\pmod {25}$

Do đó:

$A\equiv 1+64-65\equiv 0\pmod {25}$ hay $A\vdots 25(**)$

Từ $(*); (**)\Rightarrow A\equiv 0\pmod {100}$

Ta có đpcm.

 

Bạn có thể gõ lại công thức rõ hơn được không?

9 tháng 6 2016

Ta có : 

\(A=20^{11}+22^{12}+1996^{2009}\equiv\left(-1\right)^{11}+1^{12}+1^{2009}=1\left(mod7\right)\)

Vậy A chia cho 7 dư 1.

2 tháng 10 2020

Bg

C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))

=> n = 11k + 4  (với k \(\inℕ\))

=> n2 = (11k)2 + 88k + 42 

=> n2 = (11k)2 + 88k + 16  

Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5

=> n2 chia 11 dư 5

=> ĐPCM

C2: Ta có: n = 13x + 7 (với x \(\inℕ\))

=> n2 - 10 = (13x)2 + 14.13x + 72 - 10

=> n2 - 10 = (13x)2 + 14.13x + 39

Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13

=> n2 - 10 \(⋮\)13

=> ĐPCM

28 tháng 7 2017

Câu 1:

Ta có:

\(n=11k+4\)

\(\Rightarrow n^2=\left(11k+4\right)^2=121k^2+88k+16\)

\(121k^2\) chia hết cho 11; \(88k\) chia hết cho 11 và 16 chia cho 11 dư 5 nên

\(121k^2+88k+16\) chia cho 11 dư 5

Do đó \(n^2\) chia cho 11 dư 5.

Câu 2:

Ta có:

\(n=13k+7\)

\(\Rightarrow n^2-10=\left(13k+7\right)^2-10\)

\(=169k^2+182k+49-10=169k^2+182k+39\)

\(169k^2;182k;39\) chia hết cho 13 nên \(169k^2+182k+39\) chia hết cho 13.

Do đó \(n^2-10\) chia hết cho 13.

Chúc bạn học tốt!!!

28 tháng 7 2017

thanks bạn nha!!! Chúc bạn học tốt nha!!!

28 tháng 7 2021

220 ≡ 1 ( mod 3 ) ⇒ \(220^{119^{69}}\) ≡ 1 ( mod 3 )

119 ≡  −1 ( mod 3 ) ⇒ \(119^{69^{220}}\) ≡ −1( mod 3 )

69 ≡ 0 ( mod 3 ) ⇒ \(69^{220^{119}}\) ≡ 0 ( mod 3 )
Do đó A ⋮ 3 ( dư 1 )
Tương tự ta có:
220 ≡ −1( mod 17 ) ⇒ \(220^{119^{69}}\) ≡ -1 ( mod 17 )

119 ≡ 0 ( mod 17 ) ⇒ \(119^{69^{220}}\) ≡ 0 ( mod 17 )

69 ≡ 1 ( mod 17 ) ⇒ \(69^{220^{119}}\) ≡ 1 ( mod 17 )

Suy ra A ⋮ 17 (2)

Lại có A là số chẵn (Vì \(69^{220^{119}}\)\(119^{69^{220}}\) là số lẻ, \(220^{119^{69}}\) là số chẵn)

Suy ra: A ⋮ 2 (3)

Vì 2, 3, 17 nguyên tố cùng nhau nên từ (1), (2), (3) suy ra: A ⋮ 2.3.17 hay A ⋮ 102

29 tháng 7 2021

thank youyeu

13 tháng 3 2022

a)xét tam giác AHC vuông tại H và tam giác BEC vuông tại E có:

góc C:góc chung

góc E= góc H=90 độ (đường cao AH, BE)

=> tam giác AHC đồng dạng với tam giác BEC(góc-góc)

=> CH/CE=CA/CB(các cặp cạnh tương ứng tỉ lệ)

=> CH.CB=CE.CA(điều phải cm)

b) Có CH.CB=CE.CA(cm a)

=> CH/CE=CA/CB

xét tam giác CHE và tam giác ABC có:

góc C:góc chung

CH/CE=CA/CB(cmt)

=> tam giác CHE đồng dạng với tam giác ABC(c-g-c)

p/s: bạn thay đồng dạng,góc,độ=kí hiệu nhé.hình mình vẽ hơi ẩu b thông cảm huhu

27 tháng 9 2019

Nếu n chia hết cho 13 thì dư 7 có dạng \(13k+7\left(k\inℕ\right)\)

Khi đó : 

\(n^2-10=\left(13k+7\right)^2-10=13^2k^2+2.13k.7+7^2-10\)

\(=13^2k^2+13k.14+39=13.\left(13k^2.14k+3\right)⋮13\)

Vậy \(n^2-10⋮13\left(đpcm\right)\)

Chúc bạn học tốt !!!