Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có : x^2-2x+2 = (x^2-2x+1)+1 = (x-1)^2 + 1
Vì (x-1)^2 >= 0 nên (x-1)^2 + 1 > 0
=> ĐPCM
k mk nha
Đây là Kết quả của mình
Ta có \(x^2\ge2x\)( dấu '=' chỉ xảy ra khi và chỉ khi x=2)
Ta có \(x^2\ge0\)( dấu '=' chỉ xảy ra khi và chỉ khi x=0)
Suy ra \(x^2\ge2x\ge0\)(1)
Mà ta có \(x^2-2x+2\)Nhận thấy \(2>0\)(2)
Từ (1) và (2) có \(x^2-2x+2>0\)
Vậy \(x^2-2x+2>0\)
Ta có:
\(x^2-x+1\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\) và \(\dfrac{3}{4}>0\)
Nên: \(x^2-x+1>0\)
\(x^2-x+1\)
\(=x^2-\dfrac{1}{2}.x-\dfrac{1}{2}.x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=x\left(x-\dfrac{1}{2}\right)-\dfrac{1}{2}\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)\left(x-\dfrac{1}{2}\right)+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x ( đpcm )
Bn cho đa thức A(x) = 0 sau đó tính và viết câu kết luận
mk nghĩ là thế!! =))
Ta có:
\(-x^2+3x-4\)
=\(-\left(x^2-3x+2,25\right)-1,75\)
=\(-\left(x-1,5\right)^2-1,75\le-1,75\forall x\)
\(\Rightarrow-x^2+3x-4\le0\forall x\left(đpcm\right)\)