Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/
$A=n^5-n=n(n^4-1)=n(n^2-1)(n^2+1)$
Nếu $n$ lẻ thì $n^2-1$ chẵn $\Rightarrow A\vdots 2$
Nếu $n$ chẵn thì hiển nhiển $A\vdots 2$
Vậy $A\vdots 2(1)$
--------------------
Nếu $n\vdots 3$ thì hiển nhiên $A\vdots 3$
Nếu $n$ không chia hết cho 3. Ta biết 1 scp khi chia cho 3 dư 0 hoặc 1. Mà $n$ không chia hết cho $3$ nên $n^2$ chia 3 dư 1.
$\Rightarrow n^2-1\vdots 3\Rightarrow A\vdots 3$
Vậy $A\vdots 3(2)$
---------------------------
Nếu $n$ chia hết cho 5 thì hiển nhiên $A\vdots 5$
Nếu $n$ không chia hết cho 5: Ta biết 1 scp khi chia 5 dư 0,1 hoặc 4. $n^2$ không chia hết cho 5 nên $n^2$ chia 5 dư 1 hoặc 4.
+ $n^2$ chia 5 dư 1 thì $n^2-1\vdots 5\Rightarrow A\vdots 5$
+ $n^2$ chia 5 dư 4 thì $n^2+1\vdots 5\Rightarrow A\vdots 5$
Vậy tóm lại $A\vdots 5(3)$
Từ $(1); (2); (3)$ mà $2,3,5$ đôi một nguyên tố cùng nhau nên $A\vdots (2.3.5)$ hay $A\vdots 30$
Bg
C1: Ta có: n chia hết cho 11 dư 4 (n \(\inℕ\))
=> n = 11k + 4 (với k \(\inℕ\))
=> n2 = (11k)2 + 88k + 42
=> n2 = (11k)2 + 88k + 16
Vì (11k)2 \(⋮\)11, 88k \(⋮\)11 và 16 chia 11 dư 5
=> n2 chia 11 dư 5
=> ĐPCM
C2: Ta có: n = 13x + 7 (với x \(\inℕ\))
=> n2 - 10 = (13x)2 + 14.13x + 72 - 10
=> n2 - 10 = (13x)2 + 14.13x + 39
Vì (13x)2 \(⋮\)13, 14.13x \(⋮\)13 và 39 chia 13 nên n2 - 10 = (13x)2 + 14.13x + 39 \(⋮\)13
=> n2 - 10 \(⋮\)13
=> ĐPCM
Để cho (n2 +2) chia hết cho 5 thì n2 phải có tận cùng là 3 hoặc 8
Mà n2 là 1 số chính phương nên không bao giờ có tận cùng là 3 hoặc 8.
Từ đó ta có (n2 +2) không chia hết cho 5 với mọi số tự nhiên n
Vậy phân số \(\frac{n^2+2}{5}\)là phân số tối giản với mọi số tự nhiên n
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Giả sử ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = d
Ta có: \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\)
Do \(n^3+2n⋮d\Rightarrow n\left(n^3+2n\right)⋮d\)
\(\Rightarrow n^4+2n^2⋮3\)
Vậy thì \(n^4+3n^2+1-n^4-2n^2=n^2+1⋮d\) (1)
Lại có \(n^3+2n=n\left(n^2+1\right)+n⋮d\) nên \(n⋮d\Rightarrow n^2⋮d\) (2)
Từ (1) và (2) suy ra \(1⋮d\Rightarrow d=1\)
Vậy thì ƯCLN(n3 + 2n ; n4 + 3n2 + 1) = 1 hay phân số \(\frac{n^3+2n}{n^4+3n^2+1}\) là phân số tối giản.
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Hướng dẫn giải:
Gọi d là ƯCLN của 7n - 5 và 3n - 2
⇒ (7n - 5)⋮ d và (3n - 2)⋮ d
⇒ [3(7n - 5) - 7(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N