Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1-\dfrac{3}{n\left(n+2\right)}=\dfrac{n\left(n+2\right)-3}{n\left(n+2\right)}=\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow M=\dfrac{1.5}{2.4}.\dfrac{2.6}{3.5}.\dfrac{3.7}{4.6}...\dfrac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\dfrac{1.2.3...\left(n-1\right)}{2.3.4...n}.\dfrac{5.6.7...\left(n+3\right)}{4.5.6...\left(n+2\right)}\)
\(=\dfrac{1}{n}.\dfrac{n+3}{4}=\dfrac{n+3}{4n}=\dfrac{1}{4}+\dfrac{3}{4n}>\dfrac{1}{4}\) (đpcm)
\(\left(1+\dfrac{1}{1.3}\right).\left(1+\dfrac{1}{2.4}\right).\left(1+\dfrac{1}{3.5}\right).........\left[1+\dfrac{1}{x.\left(x+2\right)}\right]=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{2^2}{1.3}.\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}........\dfrac{\left(x+1\right)^2}{x.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left[2.3.4.............\left(x+1\right)\right].\left[2.3.4.............\left(x+1\right)\right]}{\left(1.2.3...................x\right).\left(3.4.5..........................\left(x+2\right)\right)}=\dfrac{31}{16}\)
\(\Rightarrow\dfrac{\left(x+1\right).2}{1.\left(x+2\right)}=\dfrac{31}{16}\)
\(\Leftrightarrow16.2\left(x+1\right)=31.\left(x+2\right)\)
\(\Rightarrow32x+32=31x+62\)
\(\Rightarrow x=30\)
Vậy x=30
Chúc bn học tốt
ta có (a-1)2 ≥ 0 ∀a
<=> a2-2a+1 ≥ 0
<=>a2+4a-2a+1 ≥ 4a (cộng cả 2 vế va 4a)
<=> a2+2a+1 ≥ 4a
<=> (a+1)2 ≥ 4a
CM tương tự ta đc
(b+1)2 ≥ 4b
(c+1)2 ≥ 4c
Nhân các vế với nhau ta có
[(a+1)2+(b+1)2 +(c+1)2 ]2 ≥ 4a.4b.4c
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64abc
<=> [(a+1)2+(b+1)2 +(c+1)2 ]2 ≥64 (vì abc =1)
<=> (a+1)2+(b+1)2 +(c+1)2 ≥8 (đpcm)
Ta có :
\(1-\frac{3}{n\left(n+2\right)}=\frac{n^2+2n-3}{n\left(n+2\right)}=\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(\Rightarrow A=\frac{1.5}{2.4}.\frac{2.6}{3.5}...\frac{\left(n-1\right)\left(n+3\right)}{n\left(n+2\right)}\)
\(=\left(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{n-1}{n}\right)\left(\frac{5}{4}.\frac{6}{5}.\frac{7}{6}...\frac{n+3}{n+2}\right)\)
\(=\frac{1}{n}.\frac{n+3}{4}=\frac{n+3}{n}.\frac{1}{4}\ge\frac{1}{4}\left(dpcm\right)\)
1)\(2a^4+1\ge2a^3+a^2\)
\(\Leftrightarrow2a^4-2a^3-a^2+1\ge0\)
\(\Leftrightarrow\left(a^4-2a^3+a^2\right)+\left(a^4-2a^2+1\right)\ge0\)
\(\Leftrightarrow\left(a^2-a\right)^2+\left(a^2-1\right)^2\ge0\)(luôn đúng)
"="<=>a=1
Ta có:\(2A=\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{9\cdot11}\)
\(2A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{11}\)
\(2A=1-\dfrac{1}{11}=\dfrac{10}{11}\)
\(B=\left(1+\dfrac{1}{1\cdot3}\right)\left(1+\dfrac{1}{2\cdot4}\right)\cdot...\cdot\left(1+\dfrac{1}{9\cdot11}\right)\)
\(B=\dfrac{4}{1\cdot3}\cdot\dfrac{9}{2\cdot4}\cdot...\cdot\dfrac{100}{9\cdot11}\)
\(B=\dfrac{2\cdot2\cdot3\cdot3\cdot...\cdot10\cdot10}{1\cdot3\cdot2\cdot4\cdot...\cdot9\cdot11}\)
\(B=\dfrac{20}{11}\)
\(\Rightarrow11< 2x< 20\)
\(\Rightarrow x\in\left\{6;7;8;9\right\}\)
bạn làm theo công thức \(\frac{n}{n.\left(n+1\right)}=\frac{n}{n}-\frac{n}{n+1}\)
a)Đặt A= \(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(\Rightarrow2A=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2n-1}-\frac{1}{2n+1}\)
\(\Rightarrow2A=1-\frac{1}{2n+1}< 1\)
\(\Rightarrow A< \frac{1}{2}\)(đpcm)
b)Ta có: \(1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)
mà \(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}=1+\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1+1-\frac{1}{n}\)
\(=2-\frac{1}{n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}< 2\)
\(\Rightarrow1+\frac{1}{1.2}+\frac{1}{1.2.3}+\frac{1}{1.2.3.4}+...+\frac{1}{1.2.3...n}< 2\)(đpcm)
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{n\left(n+2\right)}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}....\frac{n\left(n+2\right)+1}{n\left(n+2\right)}\)
\(=\frac{\left(2-1\right)\left(2+1\right)+1}{1.3}.\frac{\left(3-1\right)\left(3+1\right)+1}{2.4}.\frac{\left(4-1\right)\left(4+1\right)+1}{3.5}....\frac{\left(n+1-1\right).\left(n+1+1\right)+1}{n.\left(n+2\right)}\)
\(=\frac{2^2-1^2+1}{1.3}.\frac{3^2-1^2+1}{2.4}.\frac{4^2-1^2+1}{3.5}....\frac{\left(n+1\right)^2-1^2+1}{n\left(n+2\right)}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{\left(n+1\right)^2}{n\left(n+2\right)}=\frac{2.2.3.3.4.4....\left(n+1\right)\left(n+1\right)}{1.3.2.4.3.5....n.\left(n+2\right)}=\frac{\left[2.3.4....\left(n+1\right)\right]\left[\left(2.3.4...\left(n+1\right)\right)\right]}{\left(1.2.3...n\right).\left[3.4.5...\left(n+2\right)\right]}\)
\(=\frac{\left(n+1\right).2}{n+2}< \frac{2.\left(n+2\right)}{n+2}=2\)
=> A < 2