K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016
  • với n=0 ta có 15n+1=1 và 20n+3=3 nên và đó là hai số nguyên tố cùng nhau
  • với  n là số lẻ thì 20n+3 là số lẻ và 15n+1 là số chẵn nên\(\frac{20n+3}{15n+1}\)là một số thập phân 
  • với n là số chẵn lớn hơn 0 ta đặt n=2k(k\(\in\)N*)nên ta sẽ có \(\frac{20n+3}{15n+1}\)=\(\frac{20\times2k+3}{15\times2k+1}\)=\(\frac{40k+3}{30k+1}\)=\(\frac{30k+2+10k+1}{30k+1}\)=\(\frac{30k+2}{30k+1}+\frac{10k+1}{30k+1}\)vì 30k+2 và 30k+1 là hai số tự nhiên liên tiếp nên\(\frac{30k+2}{30k+1}\)là số thập phân với k\(\in\)N*  và 10k+1<30k+1 nên \(\frac{10k+1}{30k+1}\)là số thập phân vô hạn nên \(\frac{20n+3}{15n+1}\)là số thập phân vô hạn với n là số chẵn lớn hơn 0
  • Kết luận đpcm
24 tháng 11 2016

gọi sct là d

4.(15n+1)-3(20n+3)chia hết cho d

(60n+9)-(60n+4)chia hết d

d là ước chung của 2 số

d=1

vậy hai số NTCN(ĐPCM)

24 tháng 11 2016

Gọi d là ƯCLN ( 15n + 1 ; 20n + 3 ).

Theo đề ta có : Vì 15n + 1 và 20n + 3 phải là số nguyên tố cùng nhau nên suy ra :

                        ƯCLN ( 15n + 1 ; 20n + 3 ) = d  

Vậy 15n + 1 chia hết cho d ; 20n + 3 chia hết cho d => 15n + 1 + 20n + 3 chia hết cho d.

15n + 1 + 20n + 3 = 5n . 3 + 1 + 5n . 4 + 3

                           = 5n . ( 3 + 1 + 4 + 3 )

                           =  5n . 11 chia hết cho d

=> 5n chia hết cho d.

=> d = 1

Vì ƯCLN ( 15n + 1 ; 20n + 3 ) = 1 nên với mọi số tự nhiên n ; 15n + 1 và 20n + 3 là số nguyên tố.

24 tháng 11 2016

Bài này dễ nhưng trình bày hơi dài

24 tháng 11 2016

Câu của mình giống của bạn.

16 tháng 9 2023

1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)

\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)

\(\Rightarrow13⋮d\)

\(\Rightarrow d\in\left\{1,13\right\}\)

Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)

2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\) 

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

\(\Rightarrow1⋮d\) 

\(\Rightarrow d=1\)

 Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)

 3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)

 4. Tương tự 3.

 

 

AH
Akai Haruma
Giáo viên
16 tháng 9 2023

Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.

24 tháng 11 2016

20n+ mấy vậy 1k.com

24 tháng 11 2016

+ 3 bạn ạ mình viết thiếu chả biết sửa như nào

 

16 tháng 11 2015

Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)

Ta có: \(20n+3\) chia hết cho  \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)

và  \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)

Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)

\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho  \(d\)

\(\Leftrightarrow1\) chia hết cho \(d\)  \(\Rightarrow d=1\)

Vậy, \(20n+3\) và  \(30n+4\) nguyên tố cùng nhau với \(n\in N\)

16 tháng 11 2016

tink nhé 

gọi ƯCLN(4n+3;6n+5)=k

=>4n+3 chia hết cho k      | =>3(4n+3) chia hết cho k

    6n+5 chia hết cho k      | =>2(6n+5) chia hết cho k

=>12n+9 chia hết cho k

=>12n+10 chia hết cho k

=>(12n+10)-(12n+9) chia hết cho k

=>1chia hết cho k =>k=1

=>đpcm

chúc bạn học tốt

16 tháng 11 2016

 4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?

goi UCLN(4n+3,6n+5)=d 

=>4n+3 chia hết cho d=>24n+18 chia hết cho d

=>6n+5 chia hết cho d=>24n+20 chia hết cho d

=>(24n+20)-(24n+18) chia hết cho d

=>2 chia hết cho d

mà 2 chia hết cho 1;2

=>d=1;2

.....

đang ban bn làm tiếp nhé

10 tháng 5 2016

Gọi d là ƯCLN(3n+2; 15n+7)
=> 3n+2:d;15n+7:d
=>5(3n+2)-(15n+7):d
=> 15n+10-15n-7:d
=> 3 \(:\) d =>d \(\in\)  (1;3)( vì d là UCLN nên chỉ có thể là số dương)
Do trong 3n+2 và 15n+7 sẽ có 1 số chẵn và 1 số lẻ => ƯC(3n+2;15n+7)\(\ne\) 2
Vậy d=1
=> 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau 

10 tháng 5 2016

Nếu như 3n+2 và 15n+7 là 2 số nguyên tố cùng nhau

=> ƯCLN(3n+2;15n+7)= 1 (cũng có thể là -1 nhưng vì n là số tự nhiên nên ƯCLN của chúng chỉ bằng 1)

Gọi ƯCLN(3n+2;15n+7)=d

=> 3n+2 chia hết cho d và 15n+7 cũng chia hết cho d

=> 5(3n+2) chia hết cho d và 15n+7 cũng chia hết cho d

=> 15n+10 chia hết cho d và 15n+7 cũng chia hết cho d

=> (15n+10)-(15n+7) chia hết cho d

=> 3 chia hết cho d

=> d=1;3

Vậy ƯCLN(3n+2;15n+7) có thể bằng 1 và cũng có thể bằng 3

=>Chúng chưa chắc là 2 số nguyên tố cùng nhau

Nếu sai thì các bạn thông cảm nha