K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ... Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)                     ( chứng minh bằng phương pháp quy nạp toán học)Giải: Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .Giả sử (1) đúng với...
Đọc tiếp

Các bạn có thấy lời giải này có vấn đề không ạ? Nếu có thì chữa lại giúp mình ạ. Các bạn đọc kĩ nhé, mình nghĩ là có ...

 Đề bài: Chứng minh rằng với mọi số nguyên dương \(n\ge3\) thì: \(2^n>2n+1\)   (1)  

                   ( chứng minh bằng phương pháp quy nạp toán học)

Giải:

 Với n=3 thì 2^3 = 8 , 2n+1 = 2.3+1=7 . Rõ ràng vế trái lớn hơn vế phải. Vậy (1) đúng với n=3 .

Giả sử (1) đúng với n=k \(\left(k\in N,k\ge3\right)\) , tức là:

\(2^k>2k+1\)

Ta phải chứng minh \(2^{k+1}>2\left(k+1\right)+1\) hay \(2^{k+1}>2k+3\) (2)

Thật vậy: 

\(2^{k+1}>2.2^k\) , mà \(2^k>2k+1\) (theo giả thiết quy nạp)

Do đó: \(2^{k+1}>2\left(2k+1\right)=\left(2k+3\right)+\left(2k-1\right)>2k+3\) ( Vì 2k-1 > 0 )

Vậy (2) đúng với mọi \(k\ge3\)

 => \(2^n>2n+1\) với mọi số nguyên dương n và \(n\ge3\)

 

 

1
3 tháng 5 2017

sai:2k+1>2.2k

       2k+1=2.2k

sửa lại thì có thể đúng :v

26 tháng 10 2016

a)\(2^k>2k+1\left(1\right)\)

Với n=3, ta có:\(VT=8;VP=7\), nên (1) đúng nới n=3

Giả sử (1) đúng với \(k=n\), tức là \(2^n>2n+1\left(n\in N\text{*};n\ge3\right)\)

Ta sẽ chứng minh (1) đúng với \(k=n+1\) tức là phải chứng minh \(2^{n+1}>2\left(n+1\right)+1\)

Thật vậy, từ giả thiết quy nạp, ta có:

\(2^{n+1}=2\cdot2^n>2\left(2n+1\right)=4n+2=2n+3+\left(2n-1\right)>2n+3\), do \(\left(n\in N\text{*},n\ge3\right)\)

Vậy (1) đúng với mọi số nguyên \(k\ge3\)

 

 

26 tháng 10 2016

b)\(n^4+6n^3+11n^2+6n\)

\(=n\left(n^3+6n^2+11n+6\right)\)

\(=n\left(n^3+n^2+5n^2+5n+6n+6\right)\)

\(=n\left[\left(n^3+n^2\right)+\left(5n^2+5n\right)+\left(6n+6\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\left(n+4\right)⋮120\)

\(120⋮24\) =>Đpcm

20 tháng 2 2017

TH1: k lẻ => k, k+2 cùng lẻ nên k(k+2) lẻ

mà x(x+1) là tích 2 số liên tiếp => x(x+1) chẵn 

=> vô lý 

Th2: k chẵn =>UCLN(k,k+2)=2

Mà UCLN(x,x+1)=1=> không tồn tại x thỏa mãn

=> vậy không tòn tại x thỏa mãn

24 tháng 7 2019

Câu hỏi của Nguyễn Anh Kim Hân - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo nhé!

4 tháng 4 2017

CMR: nếu 3 số tự nhiên m, m+k ,m+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6

8 tháng 4 2015

Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn => k chia hết cho 2

m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2

+ Nêu m = 3p + 1: 

xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại

xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại

=> k = 3a hay k chia hết cho 3

+ Nếu m = 3p + 2 

xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại

xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại

=> k = 3a

Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)

3 tháng 1 2016

Do m ; m + k ; m + 2k là các số nguyên tố > 3 nên m ; m + k; m+ 2k lẻ => m + m + k = 2m + k chẵn => k chẵn

=> k chia hết cho 2

m là số nguyên tố > 3 => m = 3p + 1 hoặc m = 3p + 2

+ Nêu m = 3p + 1:

xét k = 3a + 2 => m + k = 3p + 1 + 3a + 2 = 3p + 3a + 3 là hợp số => loại

xét k = 3a + 1 => m + 2k = 3p + 1 + 2.(3a+1) = 3p + 6a + 3 là hợp số => loại

=> k = 3a hay k chia hết cho 3

+ Nếu m = 3p + 2

xét k = 3a + 2 => m + 2k = 3p + 2 + 6a + 4 = 3p + 6a + 6 là hợp số => loại

xét k = 3a + 1 => m + k = 3p + 2 + 3a + 1 = 3p + 3a + 3 là hợp số => loại

=> k = 3a

Vậy k = 3a hay k chia hết cho 3 mà k chia hết cho 2 nên k chia hết cho 6 (đpcm)