Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abc = a.100+b.10+c
Theo tính chất chia hết của phép cộng ta có :
a.100 chia hết 4
b.10 chia hết 4
c chia hết 4 (đpcm)
b) 9x + 5y
=2x +3y+7x +2y
=2(2x+3y)+5x -1y
=3(2x+3y)+3x-4y
=4(2x+3y) +1x-7y
.........................
=13(2x +3y)-17x-34y
Vì 17 chia hết17
34 chia hết 17
=>13(3x+2y)-17x-34y hay 2x +3y chia hết cho 4
1 giải
Ta có 17 chia hết cho 17
suy ra 17a+3a+b chia hết cho 17
suy ra 20a+2b chia hết cho 17
rút gọn cho 2
suy ra 10a+b chia hét cho 17
2 giải
* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17
vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *
nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17
vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh
3 bó tay
Câu trả lời hay nhất: + ta chứng minh a,b,c có ít nhất một số chia hết cho 3
giả sử cả 3 số trên đều không chia hết cho 3
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1)
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn
Vậy có ít nhất 1 số chia hết cho 3
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn
vậy có ít nhất 1 số cgia hết cho 4
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5)
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3
=> phải có ít nhất 1 số chia hết cho 5
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60
+, Nếu 2x+3y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 26x+39y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 26x+39y-17x-34y chia hết cho 17
=> 9x+5y chia hết cho 17
+, Nếu 9x+5y chia hết cho 17
Mà 17x và 34y đều chia hết cho 17
=> 9x+5y+17x+34y chia hết cho 17
=> 26x+39y chia hết cho 17
=> 13.(2x+3y) chia hết cho 17
=> 2x+3y chia hết cho 17 ( vì 13 và 17 là 2 số nguyên tố cùng nhau )
=> ĐPCM
Tk mk nha
Ta phân tích các số ra bao quát hệ cơ số 10 :
abcd = a x 1000 + b x 100 + c x 10 + d
nếu ta thấy có thể gộp lại như sau :
abcd = cd x 290 thì chắc chắn là abcd chia hết cho 29
Vậy a + 3b + 9c + 27d chắc chắn cũng chia hết cho 29
b ) Tương tự cách lí luận câu a