\(\dfrac{a+b}{2}=\sqrt{ab}\). Áp dụng...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )

Dấu "=" xảy ra khi \(a=b\)

Bài tập :

Có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{x}+\dfrac{x+y}{y}=2+\dfrac{x}{y}+\dfrac{y}{x}\) ( do \(x+y=1\) )

Theo BĐT trên có : \(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\sqrt{\dfrac{x}{y}\cdot\dfrac{y}{x}}=2\)

Nên \(A\ge2+2=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

23 tháng 1 2021

Ta có : \(\dfrac{a+b}{2}\ge\sqrt{ab}\) (tự cm)

Lại có : \(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}\)

Áp dụng BĐT trên ta có : : \(xy\le\left(\dfrac{x+y}{2}\right)^2\)

\(\Leftrightarrow A\ge\dfrac{x+y}{\left(\dfrac{x+y}{2}\right)^2}=\dfrac{1}{\dfrac{1}{2^2}}=4\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

Vậy...

23 tháng 1 2021

undefined

23 tháng 1 2021

Có: A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{x+y}{xy}\) =\(\dfrac{1}{xy}\) ( do x+y=1)

     Áp dụng bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ,dâú bằng xảy ra khi a=b, ta có:

A=\(\dfrac{1}{x}+\dfrac{1}{y}\) =\(\dfrac{1}{xy}\) ≥ \(\dfrac{2}{x+y}\) =\(\dfrac{2}{1}\) =2 ( x+y=1)

dấu bằng xảy ra khi x=y=0,5. 

c/m bđt \(\dfrac{a+b}{2}\ge\sqrt{ab}\) ⇔ a+b ≥ 2\(\sqrt{ab}\)

                                    ⇔(a+b)2 ≥ 4ab 

                                     ⇔a2 +b2 +2ab≥ 4ab

                                      ⇔(a-b)≥ 0 (luôn đúng)

   dấu bằng xảy ra khi a=b.

23 tháng 1 2021

\(\dfrac{a+b}{2}\ge\sqrt{ab}\left(\circledast\right)\\ \Leftrightarrow a+b\ge2\sqrt{ab}\\ \Leftrightarrow\left(a+b\right)^2\ge4ab\\ \Leftrightarrow a^2+2ab+b^2-4ab\ge0\\ \Leftrightarrow a^2-2ab+b^2=\left(a-b\right)^2\ge0\left(\text{luôn đúng}\right)\)

Vậy BĐT (*) được chứng minh.

\(A=\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{x+y}{xy}=\dfrac{1}{xy}\)

__________________________________

 \(\dfrac{x+y}{2}\ge\sqrt{xy}\\ \Rightarrow\sqrt{xy}\le\dfrac{1}{2}\\ \Rightarrow xy\le\dfrac{1}{4}\\ \Rightarrow A=\dfrac{1}{xy}\ge\dfrac{1}{\dfrac{1}{4}}=4\)

Vậy GTNN của A = 4

Dấu "=" xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)

a: Thiếu vế phải rồi bạn

b: \(\Leftrightarrow\dfrac{x+y}{xy}>=\dfrac{4}{x+y}\)

\(\Leftrightarrow\left(x+y\right)^2>=4xy\)

\(\Leftrightarrow\left(x-y\right)^2>=0\)(luôn đúng)

20 tháng 3 2017

Bài 1:

Áp dụng BĐt cauchy dạng phân thức:

\(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\ge\dfrac{4}{3\left(x+y\right)}\)

\(\Rightarrow\left(3x+3y\right)\left(\dfrac{1}{2x+y}+\dfrac{1}{x+2y}\right)\ge\left(3x+3y\right).\dfrac{4}{3x+3y}=4\)

dấu = xảy ra khi 2x+y=x+2y <=> x=y

20 tháng 3 2017

Bài 2:

ta có: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\ge\dfrac{4^2}{a+b+c+d}=\dfrac{16}{a+b+c+d}\)(theo BĐt cauchy-schwarz)

\(\Rightarrow\dfrac{1}{a+b+c+d}\le\dfrac{1}{16}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{d}\right)\)

Áp dụng BĐT trên vào bài toán ta có:

\(A=\dfrac{1}{2a+b+c}+\dfrac{1}{a+2b+c}+\dfrac{1}{a+b+2c}\le\dfrac{1}{16}\left(\dfrac{2}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{c}\right)\)\(A\le\dfrac{1}{16}.4\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

......

dấu = xảy ra khi a=b=c

Bài 2:

Áp dụng BĐT cauchy cho 2 số dương:

\(a^2+1\ge2a\)

\(\Leftrightarrow\dfrac{a}{a^2+1}\le\dfrac{a}{2a}=\dfrac{1}{2}\)

thiết lập tương tự:\(\dfrac{b}{b^2+1}\le\dfrac{1}{2};\dfrac{c}{c^2+1}\le\dfrac{1}{2}\)

cả 2 vế các BĐT đều dương ,cộng vế với vế,ta có dpcm

dấu = xảy ra khi a=b=c=1

11 tháng 12 2018

\(\frac{x}{a}+\frac{y}{b}=1\)

\(\Rightarrow\left(\frac{x}{a}+\frac{y}{b}\right)^3=1\)

\(\Leftrightarrow\frac{x^3}{a^3}+\frac{y^3}{b^3}+3\frac{xy}{ab}\left(\frac{x}{a}+\frac{y}{b}\right)=1\)

\(\Leftrightarrow\frac{x^3}{a^3}+\frac{y^3}{b^3}-6=1\)

\(\Leftrightarrow\frac{x^3}{a^3}+\frac{y^3}{b^3}=7\)

                     đpcm