Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Gọi ƯCLN( a, b) = d (d số tự nhiên>1)--> 4n + 3 chia hết cho d và 5n + 1 chia hết cho d
-> 20n + 15 chia hết cho d và 20n + 4 chia hết cho d --> (20n + 15) - (20n + 4) chiahết cho d
--> 15 - 4 chia hết cho d --> 11 chia hết cho d --> d = 11 (d0 d > 1)
2/ ab = ƯCLN(a,b).BCNN(a, b) = 2940 --> ƯCLN(a, b) = 2940:BCNN(a,b) = 2940:210 = 14
ƯCLN(a, b) = 14 --> a = 14a' và b= 14b' , trong đó a' và b' là hai số nguyên tố cùng nhau
--> ab = 14a'.14b' = 196a'.b' --> a'.b' = 15 = 15.1; 5.3 vì a> b --> a'>b' .
Nếu: a' = 15 --> a = 14.15 =210
b' = 1 ----> b = 14b' = 14.
Nếu :a' = 5 --> a = 14.a' = 70
b' = 3 --> b = 14.3 = 42.
Bài 1 :
a) Ta có :
\(12=2^2.3\)
\(26=2.13\)
\(70=2.5.7\)
=> UCLN ( 12 , 26 , 70 ) = 2
=> UC ( 12 , 26 , 70 } = Ư ( 2 ) = { -2 ; -1 ; 1 ; 2 }
b)
Ta có ;
\(60=2^2.3.5\)
\(45=3^2.5\)
=> BCLN ( 60 ; 45 ) = \(2^2.3^2.5\)= 180
=> BC ( 60 ; 45 } = B ( 180 ) = { 0 ; 180 ; 360 ; 540 ; 720 ; 900 ; 1080 , ...}
Mà đề bài yêu cầu tìm BC ( 60 ; 45 } có 3 chữ số
=> BC ( 60 ; 45 ) = { 180 ; 360 ; 540 ; 720 ; 900 }
Bài 2 :
Gọi UCLN ( n + 1 ; 3n + 4 ) = d
=> n + 1 chia hết cho d ; 3n + 4 chia hết cho d
=> 3(n+1) chia hết cho d ; 3n + 4 chia hết cho d
=> 3n + 4 - ( 3n + 3 ) chia hết cho d
=> 3n + 4 - 3n - 3 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> n + 1 và 3n + 4 ( n thuộc N ) là nguyên tố cùng nhau
12=22.3
26=2.13
70=2.5.7
UCLN<12;26;70>=2
=>UC<12;26;70>={1;2}
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau
Gọi \(d=ƯCLN\left(2n+1;2n+3\right)\)
\(\Rightarrow2n+1⋮d;2n+3⋮d\)
\(\Rightarrow2n+3-2n-1⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=2\)
Mà \(2n+1;2n+3\) là các số lẻ nên \(d=1\)
=> đpcm
a) Gọi ƯC cua 2n+1 ; 3n+1 là d
\(\begin{cases}2n+1⋮d\\3n+1⋮d\end{cases}\)
\(\Rightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\\ \Rightarrow6n+3-6n-2⋮d\\ \Rightarrow1⋮d\\ d=1 \)
b) Gọi ƯC cua 5n+6 và 8n+7 là d
\(\Rightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\\\Rightarrow 40n+48-40n-35⋮d\\\Rightarrow5⋮d\\ d=5 \)
c)7n+10 và 5n+7
Gọi d=(7n+10,5n+7) với n \(\in\) N và d \(\in\) N*
\(\Rightarrow\)7n+10\(⋮\)d\(\Rightarrow\)5(7n+10)\(⋮\)d\(\Rightarrow\)35n+50\(⋮\)d (1)
\(\Rightarrow\)5n+7\(⋮\)d \(\Rightarrow\)7(5n+7) \(⋮\)d\(\Rightarrow\)35n+49\(⋮\)d (2)
Từ (1) và (2) suy ra: (35n+50)-(35n+49)\(⋮\)d
35n+50-35n-49 \(⋮\)d
(35n-35n)+(50-49)\(⋮\)d
0 + 1 \(⋮\)d
1 \(⋮\)d
Vì:1\(⋮\)d nên d\(\in\)Ư(1)
Mà:Ư(1)={1} nên d=1
Vậy 2n+1 và 3n+1 là hai số nguyên tố cùng nhau
Ta có:a,b là số nguyên tố cùng nhau=>ƯCLN(a,b)=1
=>ƯC(a,b)=1;(a,b) thuộc Z
=>Điều phải chứng minh