Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/2 + 1/3 + 1/4 + ... + 1/15 + 1/16 = (1/2 + 1/3 + 1/4 + 1/5) + (1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11) + (1/12 + 1/13 + 1/14) + (1/15 + 1/16)
Vì 1/6 + 1/7 + 1/8 < 3x 1/6 = 1/2
1/9 + 1/10 + 1/11 <3x1/9 = 1/3
1/12 + 1/13 +1/14 < 3x1/12 = 1/4
1/15 + 1/16 < 3 x 1/15 = 1/5
Nên A < 2 x (1/2 + 1/3 + 1/4 + 1/5) < 2 x (1/2 + 1/2 + 1/4 + 1/4) =3 (1)
Lập luận tương tự có:
A = ( 1/2 + 1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) + (1/9 + 1/10 + 1/11 + 1/12) + (1/13 + 1/14 + 1/15 + 1/16) > (1/2 + 1/3 + 1/4) + 4 x 1/8 + 4 x 1/ 12 + 4 x 1/16
Hay A > 2 x (1/2 + 1/3 + 1/4) > 2 x (1/2 + 1/4 + 1/4) = 2 (2)
Từ (1) và (2) ta có 2 < A < 3. Vậy A không phải là số tự nhiên.
Không vì \(\frac{1}{2}+\frac{1}{3}+\frac{1}{6}=1\)nhưng \(\frac{1}{4}+\frac{1}{8}+\frac{1}{7}=\frac{116}{224}\)mà 1 + \(\frac{116}{224}=1\frac{116}{224}\)không phải là số tự nhiên !!! Làm theo cách khác \(\frac{116}{224}\)không phải là số tự nhiên nên S không phải là số tự nhiên
Kết luận : S không phải là số tự nhiên
bạn đã giải theo 3 hướng sau đây : Hướng 1 : Tính S = 1 201/280 Hướng 2 : Khi qui đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì 1/2 ; 1/3 ; 1/4 ; 1/5 ; 1/6 ; 1/7 sẽ trở thành các phân số mà tử số là số chẵn, chỉ có 1/8 là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên. Hướng 3 : Chứng minh 5/4 < S < 2 Thật vậy 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 > 6 x 1/8 = 3/4 nên S > 3/4 + 1/2 = 5/4 Mặt khác : 1/4 + 1/5 + 1/6 + 1/7 < 4 x 1/4 = 1 nên S < 1 + 1/2 + 1/3 + 1/8 = 1 + 1/2 + 11/24 <2 Vì 5/4 < S < 2 nên S không phải là số tự nhiên.
Tính S = 1\(\frac{201}{280}\)
Khi quy đồng mẫu số để tính S thì mẫu số chung là số chẵn. Với mẫu số chung này thì. \(\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{7}\)sở trở thành các phân số mà tử số là số chẵn, chỉ có \(\frac{1}{8}\)là trở thành phân số mà tử số là số lẻ. Vậy S là một phân số có tử số là số lẻ và mẫu số là số chẵn nên S không phải là số tự nhiên.
Chứng minh \(\frac{5}{4}\)< S < 2
Thật vậy: \(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}\)> 6 x \(\frac{1}{8}\)= \(\frac{3}{4}\)
Nên S > \(\frac{3}{4}\)\(+\frac{1}{2}\)= \(\frac{5}{4}\)
Mặt khác: \(\frac{1}{4}\)\(+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\)< 4 x \(\frac{1}{4}\)= 1
Nên S < 1 + \(\frac{1}{2}+\frac{1}{3}+\frac{1}{8}\)= 1 + \(\frac{1}{2}\)+ \(\frac{11}{24}\)< 2
Vì \(\frac{5}{4}\)< S < 2 nên S không phải là số tự nhiên
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
Đặt: \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{2048}\)
\(\Rightarrow A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\)
\(\Rightarrow2A=2\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{11}}\right)\)
\(=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{10}}\)
\(\Rightarrow2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{10}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{11}}\right)\)
\(\Rightarrow A=1-\frac{1}{2^{11}}=\frac{2^{11}-1}{2^{11}}=\frac{2047}{2048}\)
\(2A=1+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{1024}\)
\(2A-A=\left(1+...+\frac{1}{1024}\right)-\left(\frac{1}{2}+...+\frac{1}{2048}\right)\)
\(A=1-\frac{1}{2048}=\frac{2047}{2048}\)
1 + 2 + 3 + 4 + ... + 29 = 30 x 14 + 15 = 435 phân số cho đến khi mẫu số bằng 29
435 + 15 = 450
Số hạng thứ 450 là
S=1/(1+2)+1/(1+2+3)+1/(1+2+3+4)+...+1/(1+2+3+4+...+10)
S=1/(2*3/2)+1/(3*4/2)+1/(4*5/2)+...+1/(10*11/2)
S=2(1/(2*3)+1/(3*4)+1/(4*5)+1/(5*6)+...+1/(10*11)
S=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/10-1/11)
S=2(1/2-1/11)
S=2*9/22
S=9/11
nho k cho minh voi nha
1/16+1/2=9/16 không phải là số tự nhiên
Có thể chứng minh được S>2 đó!