K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Giả sứ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ

=>a+b=c, trong đó a,c là số hữu tỉ,b là số vô tỉ=>b=c-a mà a,c là số hữu tỉ=>c-a là số hữu tỉ=>b là số hữu tỉ(trái với đề bài)

=>Giả sứ sai=> đpcm

30 tháng 11 2019

giải hộ tớ bài ở trên

30 tháng 11 2019

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒ b=c-a mà a và c là các số hữu tỉ ⇒ a-c là số hữu tỉ ⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒ đpcm

1 tháng 9 2017

Bn tham khảo nè: 

 giả sử x + y = a với a là số hữu tỉ 
=> y = a - x 
mà a và x là hữu tỉ nên a - x cũng hữu tỉ 
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n) 
=> y cũng hữu tỉ 
vô lý 

30 tháng 10 2016

Y la so vo ti

30 tháng 10 2016

wa đơn giản ko bn

Giả sử √2018 là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho: m/n=√2018 (1) với m/n là phân số tối giản hay m và n có ước chung lớn nhất bằng .1

Khi đó từ (1)<=> m=n√2018<=>m^2=2018n^2 (2)

Từ đó suy ra m^2 chia hết cho 2018 nên m phải chia hết cho .2018 (3)

Do đó tồn tại số nguyên k sao cho .m=2018k

Thay vào (2) ta có thể suy ra n^2=2018k^2 hay .n=√2018k

Do k là số nguyên nên suy ra n không nguyên. Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để m/n=.√2018

 Vậy √2018 không là số hữu tỉ (√2018∉Q)

Giả sử \(\sqrt{2008}\) là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho \(\sqrt{2008}=\frac{m}{n}\)(\(\frac{m}{n}\)tối giản và \(m,n\in Z;n\ne0\))

\(\Rightarrow\sqrt{2008}=\frac{m}{n}\Rightarrow2008=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\Rightarrow m^2=2008n^2\)

Suy ra \(m^2\) \(⋮2\Rightarrow m⋮2\)(1)⇒ ta có thể viết m=2k.

Thay m=2k, ta có: \(\left(2k\right)^2=2n^2\Rightarrow4k^2=2n^2\Rightarrow2k^2=n^2\)

\(\Rightarrow n^2⋮2\Rightarrow n⋮2\)(2)

Từ (1) và (2) suy ra trái với giải thiết \(\frac{m}{n}\)là phần số tối giản

Vậy \(\sqrt{2008}\)là số vô tỉ

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.Câu 2. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 6. Tìm giá...
Đọc tiếp

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 2. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 6. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 7. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 8. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 9. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 10. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

--------------------------làm đầy đủ nha ^_^--------------------------------------------------------

0