K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Giả sứ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ

=>a+b=c, trong đó a,c là số hữu tỉ,b là số vô tỉ=>b=c-a mà a,c là số hữu tỉ=>c-a là số hữu tỉ=>b là số hữu tỉ(trái với đề bài)

=>Giả sứ sai=> đpcm

30 tháng 11 2019

giải hộ tớ bài ở trên

30 tháng 11 2019

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒ b=c-a mà a và c là các số hữu tỉ ⇒ a-c là số hữu tỉ ⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒ đpcm

1 tháng 9 2017

Bn tham khảo nè: 

 giả sử x + y = a với a là số hữu tỉ 
=> y = a - x 
mà a và x là hữu tỉ nên a - x cũng hữu tỉ 
(dễ dàng chứng minh điểu này bằng cách đặt a = p/q và x = m/n) 
=> y cũng hữu tỉ 
vô lý 

Giả sử √2018 là một số hữu tỉ thì tồn tại hai số nguyên m và n sao cho: m/n=√2018 (1) với m/n là phân số tối giản hay m và n có ước chung lớn nhất bằng .1

Khi đó từ (1)<=> m=n√2018<=>m^2=2018n^2 (2)

Từ đó suy ra m^2 chia hết cho 2018 nên m phải chia hết cho .2018 (3)

Do đó tồn tại số nguyên k sao cho .m=2018k

Thay vào (2) ta có thể suy ra n^2=2018k^2 hay .n=√2018k

Do k là số nguyên nên suy ra n không nguyên. Từ đây suy ra giả sử ban đầu là sai, tức là không có cặp số m,n nguyên nào để m/n=.√2018

 Vậy √2018 không là số hữu tỉ (√2018∉Q)

Giả sử \(\sqrt{2008}\) là số hữu tỉ, thế thì tồn tại các số nguyên dương m,n sao cho \(\sqrt{2008}=\frac{m}{n}\)(\(\frac{m}{n}\)tối giản và \(m,n\in Z;n\ne0\))

\(\Rightarrow\sqrt{2008}=\frac{m}{n}\Rightarrow2008=\left(\frac{m}{n}\right)^2=\frac{m^2}{n^2}\Rightarrow m^2=2008n^2\)

Suy ra \(m^2\) \(⋮2\Rightarrow m⋮2\)(1)⇒ ta có thể viết m=2k.

Thay m=2k, ta có: \(\left(2k\right)^2=2n^2\Rightarrow4k^2=2n^2\Rightarrow2k^2=n^2\)

\(\Rightarrow n^2⋮2\Rightarrow n⋮2\)(2)

Từ (1) và (2) suy ra trái với giải thiết \(\frac{m}{n}\)là phần số tối giản

Vậy \(\sqrt{2008}\)là số vô tỉ

30 tháng 10 2016

Y la so vo ti

30 tháng 10 2016

wa đơn giản ko bn

12 tháng 10 2023

Ta có:

\(\sqrt{2}\approx1,414214,...\) 

\(\sqrt{3}\approx1,732051...\)

Nên số hữu tỉ giữa hai số là: \(1,5=\dfrac{3}{2}\)

Mà: \(\sqrt{2}< \sqrt{2,5}< \sqrt{3}\)

Nên số vô tỉ giữa hai số là: \(\sqrt{2,5}\approx1,58...\)