K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2016

Lấy 1 nghiệm là \(\sqrt{2}+\sqrt{3}\) và 1 nghiệm là biểu thức liên hợp với nó \(\sqrt{2}-\sqrt{3}\), tổng hai nghiệm là \(2\sqrt{2}\) và tích hai nghiệm là -1. Theo định lý Viet, hai số \(\sqrt{2}+\sqrt{3}\) và \(\sqrt{2}-\sqrt{3}\) là nghiệm của phương trình:

\(x^2-2\sqrt{2}x-1=0\)

Phương trình trên chưa phải là phương trình có hệ số hữu tỉ (vì \(2\sqrt{2}\) là số vô tỉ. Ta lại nhân cả hai vế của phương trình trên với \(x^2-1+2\sqrt{2}x\) ta được phương trình sau:

\(\left(x^2-1-2\sqrt{2}x\right)\left(x^2-1+2\sqrt{2}x\right)=0\)

Hay là:

\(\left(x^2-1\right)^2-8x^2=0\)

Đây là phương trình có các hệ số hữu tỉ và có 1 nghiệm là \(\sqrt{2}+\sqrt{3}\)

12 tháng 2 2016

pt là x2+2\(\sqrt[]{2}\)x-1=0

16 tháng 4 2020

Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:

\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)

\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)

\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)

Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ

\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ

Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)

Vậy a = 1; b = -8

12 tháng 10 2021

\(x=\dfrac{\sqrt{2}+1}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{2-1}=3+2\sqrt{2}\)

Gọi \(x_1\) là nghiệm còn lại của pt đã cho

Theo Vi-ét, ta có

\(\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1\left(3+2\sqrt{2}\right)=\dfrac{1}{a}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3+2\sqrt{2}+x_1=-\dfrac{b}{a}\\x_1=\dfrac{1}{a\left(3+2\sqrt{2}\right)}=\dfrac{3-2\sqrt{2}}{a}\end{matrix}\right.\)

Thế pt dưới lên pt trên, ta được:

\(3+2\sqrt{2}+\dfrac{3-2\sqrt{2}}{a}=-\dfrac{b}{a}\\ \Leftrightarrow a\left(3+2\sqrt{2}\right)-3-2\sqrt{2}=-b-6\\ \Leftrightarrow\left(3+2\sqrt{2}\right)\left(a-1\right)=-b-6\)

Vì a,b hữu tỉ nên \(a-1;-b-6\) hữu tỉ

Mà \(3+2\sqrt{2}\) vô tỉ nên \(a-1=0\Leftrightarrow a=1\)

\(\Leftrightarrow-b-6=0\Leftrightarrow b=-6\)

Vậy \(\left(a;b\right)=\left(1;-6\right)\)

 

12 tháng 10 2021

Nguyễn Hoàng Minh CTV, mk chưa học Vi-ét bạn à. Bn có thể giải cách khác dễ hiểu được ko??