K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

mik ko biết làm nhưng bạn vào câu hỏi tương tự có đấy^_^

27 tháng 9 2017

Ban tham Khao nha: 

Câu hỏi của Nguyễn Hạ Thảo Nguyên - Toán lớp 5 - Học toán với OnlineMath

Chứng minh tổng 2 số lẻ chia hết cho 2 .

Ta gọi 2 số lẻ là 2k + 1 và 2q + 1.

=> tổng của 2 số lẻ là :

    2k + 1 + 2q + 1 = 2(k + q) + 2

                               = 2(k + p + 2) chia hết cho 2.

Vậy...

Còn chứng minh 3 số liên tiếp chia hết cho 3 bạn gọi các số là 3k + 1 , 3k + 2 , 3k + 3 rồi tự nghĩ nha.

5 tháng 10 2016


Chia n thành  2 loại : Số chẵn (2k) ; Số lẻ (2k + 1) 

Rồi thế vô 

5 tháng 10 2016

tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
 

18 tháng 7 2018

a, Vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn nên tích 2 số này là số chẵn

Mà số chẵn luôn chia hết cho 2

 Nên tích của 2 số tự  nhiên liên tiếp luôn chia hết cho 2

b,Vì trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên tích 3 số này chia hết cho 3

18 tháng 7 2018

trong 2 số tự nhiên liên tiếp luôn có 1 số chia hết cho 2

=> tích của 2 số tự nhiên liên tiếp chia hết cho 2 (đpcm)

vậy_

phần b tt

31 tháng 10 2017

Ta có  trong hai số tự nhiên liện tiếp thì lúc nào cũng có một số chẵn và một số lẻ số chẵn đó sẽ chia hết cho 2 (đpcm)
b, 3 số tự nhiên liên tiếp sẽ có dangh 3k;3k+1;3k+2(với k thuộc N)
      Tích của 3 số đó là : 3k + 3k+1 +3k +2 = 3.(3k+3) chia hết cho 3( đpcm)

31 tháng 10 2017

a)Gọi 2 số tự nhiên liên tiếp đó là a và b 

Do là 2 STN liên tiếp nên a hoặc b sẽ là số chẵn

=> ab chia hết cho 2

 Vậy.............................

b) Gọi 3 số tự nhiên liên tiếp là 3k; 3k+1; 3k+2  ( k \(\in\) N)

 Mà 3k luôn chia hết cho 3

=> 3k(3k+1)(3k+2) luôn chia hết cho 3

     Vậy......................................

2 tháng 10 2016

a . Ta có : Vì hai số liên tiếp chiaheets cho 2 

=> số lẻ x số chẵn sẽ chia hết cho 2

vì 1 số chẵn x bất kì số nào cũng là số chẵn

13 tháng 10 2018

Gọi 2 số nguyên liên tiếp là:  và  a+1

Tích của chúng là:  A  =  a(a+1)

  • Nếu:  a = 2k thì chia hết cho 2  
  • Nếu:  a = 2k+1 thì:  a+1 = 2k+2   chia hết cho 2  =>  A  chia hết cho 2

=>  đpcm

10 tháng 7 2015

a) Gọi 2 số tự nhiện liên tiếp là n; n+1 

Ta có: 

Nếu n có dạng 2k thì n.(n+1) 

= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)

Nếu n có dạng 2k + 1 thì n.(n+1) 

= (2k+1).(2k+1+1)

= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)

b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2 

Ta có: 

Nếu n có dạng 3k thì n.(n+1).(n+2) 

= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)

Nếu n có dạng 3k+1 thì n.(n+1).(n+2) 

= (3k+1).(3k+1+1).(3k+2+1)

= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3) 

Nếu n có dạng 3k+2 thì n.(n+1).(n+2) 

= (3k+2).(3k+2+1).(3k+2+2)

= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3) 

 

10 tháng 7 2015

Cứ li ke ủng hộ chú ấy mỏi tay :D

23 tháng 12 2018

a ) vì 2 số tự nhiên liên tiếp nhau sẽ có một số chẵn và một số lẽ ( Ví dụ : 2 và 3 _ 7 và 8_12345 và 12346 ) 

     và tích của một số chẵn và một số lẽ phải là một số chẵn ( Ví dụ : 2 x 3 = 6_ 7 x 8 = 56 ........)

     mà một số chẵn thì luôn luôn chia hết cho 2 

    suy ra : tích của hai số tự nhiên liên tiếp nhau chia hết cho 2 ( điều phài chứng minh ) 

23 tháng 12 2018

a, bởi vì trong 2 số tự nhiên liên tiếp thì chắc chắn có 1 số chẵn => chia hết cho 2.