Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số chia hết cho 2,3 thì chia hết cho 6
ví dụ : 2 x 3 = 6
số chia hết cho 2 và 9 thì chia hết cho 18
ví dụ 9 x 8 = 72
Ta thấy: các số vừa chia hết cho 2 và 3 thì chia hết cho 6
Ví dụ: 2 x 3 = 6. 6 chia hết cho 2, 3 thì nó chia hết cho 6
a, Gọi 2 số đó là a,b
Gia sử a,b cùng chia 3 dư r
=> a=3k+r ; b=3q+r ( k;q thuộc N )
=> a-b = 3k+r - (3q+r) = 3k-3q = 3.(k-q) chia hết cho 3
b, Áp dụng nguyên lí điricle thì trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích của chúng chia hết cho 2
Tk mk nha
Chia n thành 2 loại : Số chẵn (2k) ; Số lẻ (2k + 1)
Rồi thế vô
tích hai số t ự nhiên liên tieeos trong đó có 1 số chẵn số lẻ suy ra chẵn nhân lẻ =chẵn (dpcm)
a, Vì trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn nên tích 2 số này là số chẵn
Mà số chẵn luôn chia hết cho 2
Nên tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
b,Vì trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 nên tích 3 số này chia hết cho 3
a) Gọi 2 số tự nhiện liên tiếp là n; n+1
Ta có:
Nếu n có dạng 2k thì n.(n+1)
= 2k.(2k+1) chia hết cho 2 (vì 2k chia hết cho 2)
Nếu n có dạng 2k + 1 thì n.(n+1)
= (2k+1).(2k+1+1)
= (2k+1).(2k+2) chia hết cho 2 (vì 2k+2 chia hết cho 2)
b) Gọi 3 số tự nhiên liên tiếp là n;n+1;n+2
Ta có:
Nếu n có dạng 3k thì n.(n+1).(n+2)
= 3k.(3k+1).(3k+2) chia hết cho 3 (vì 3k chia hết cho 3)
Nếu n có dạng 3k+1 thì n.(n+1).(n+2)
= (3k+1).(3k+1+1).(3k+2+1)
= (3k+1).(3k+2).(3k+3) chia hết cho 3 vì (3k+3 chia hết cho 3)
Nếu n có dạng 3k+2 thì n.(n+1).(n+2)
= (3k+2).(3k+2+1).(3k+2+2)
= (3k+2).(3k+3).(3k+4) chia hết cho 3 (vì 3k+3 chia hết cho 3)
Tích 2 số tự nhiên đó là a(a+1)
Với a=3k thì 3k(3k+1) chia hết cho 3 nên chia 3 dư 0
Với a=3k+1 thì (3k+1)(3k+2)=9k^2+9k+2=3k(3k^2+3k)+2 chia 3 dư 2
Với a=3k+2 thì (3k+2)(3k+3)=(3k+2)3(k+1) chia hết cho 3 nên chia 3 dư 0. vậy ta có đpcm