Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=11^{n+2}+12^{2n+1}\)
\(=11^n.121+12^{2n}.12\)
\(=11^n\left(133-12\right)+144^n.12\)
\(=133.11^n-12.12^n+144^n.12\)
\(=133.11^n-12\left(144^n-11^n\right)\)
Vì \(133.11^n⋮133;144^n-11^n⋮\left(144-11\right)\Rightarrow144^n-11^n⋮133\)
\(\Rightarrow133.11^n-12\left(144^n-11^n\right)⋮133\) hay \(A⋮133\)
Đề sai nhé, phải là :
\(3^{2n+1}+2^{n+2}⋮7\)
Ta có : \(9\equiv2\left(mod7\right)\Rightarrow9^n\equiv2^n\left(mod7\right)\)
\(\Rightarrow9^n.3+2^n.4\equiv2^n.3+2^n.4=2^n.\left(3+4\right)=2^n.7\equiv0\left(mod7\right)\)
Do đó : \(9^n.3+2^n.4⋮7\)
hay \(3^{2n+1}+2^{n+2}⋮7\) ( đpcm )
a) n = 1 thì điều trên không đúng => đề bài sai
b) 55 - 54 + 53 = 53.(52 - 5 + 1) = 53.21 chia hết cho 7 vì 21 chia hết cho 7
c) 87 - 214 = 87 - (23)4.4 = 87 - 84.4 = 84. (83 - 4) = 84.508
Vì 508 không chia hết cho 7 nên 84.508 không chia hết cho 14 => đề sai