Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng : Tích của hai số tự nhiên liên tiếp chia hết cho 2
a và b là 2 số tự nhiên liên tiếp
✽ Nếu a là chẵn, b là lẻ
⇒ a ⋮ 2 ⇒ a . b ⋮ 2
✽ Nếu a là lẻ, b là chẵn
⇒ b ⋮ 2 ⇒ a . b ⋮ 2
➤ Vậy a . b chia hết cho 2
Chứng minh rằng : Tích của 3 số tự nhiên liên tiếp chia hết cho 6
Gọi 3 số tự nhiên liên tiếp là a; a + 1; a + 2
☛ Chứng minh 3 số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia hết 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia cho 3 dư 1
⇒ a + 2 chia hết cho 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
✽ Nếu a chia cho 3 dư 2
⇒ a + 1 chia hết cho 3
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 3
☛ Chứng minh 3 số tự nhiên liên tiếp chia hết cho 2
✽ Nếu a chia hết 2
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 2
✽ Nếu a chia cho 2 dư 1
⇒ a + 1 chia hết cho 2
⇒ Tích ba số tự nhiên liên tiếp chia hết cho 2
Tích ba số tự nhiên liên tiếp chia hết cho 2 và 3
➤ Tích ba số tự nhiên liên tiếp chia hết cho 6
\(3+3^2+3^3+...+3^{60}\)
\(=3\cdot\left(1+3+3^2\right)+3^4\cdot\left(1+2+3^2\right)+...+3^{58}\cdot\left(1+3+3^2\right)\)
\(=3\cdot13+3^4\cdot13+...+3^{58}\cdot13\)
\(=13\cdot\left(3+3^4+...+3^{58}\right)⋮13\left(đpcm\right)\)
\(P=3^{10}+3^{11}+3^{12}\)
\(=3^{10}\cdot\left(1+3+3^2\right)\)
\(=3^{10}\cdot13\)
Vì \(13⋮13\) nên \(3^{10}\cdot13⋮13\)
hay \(P⋮13\)
Vậy ...
#\(Toru\)
P = 3¹⁰ + 3¹¹ + 3¹²
= 3¹⁰.(1 + 3 + 3²)
= 3¹⁰ . 13 ⋮ 13
Vậy P ⋮ 13
Câu hỏi của Nguyễn Nhật Loan - Toán lớp 6 - Học toán với OnlineMath
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
Ta có: A= 2 + 22 + 23 + ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).
= 2 x (2 + 1) + 23 x (2 + 1) + ... + 259 x (2 + 1).
= 2 x 3 + 23 x 3 + ... + 259 x 3.
= 3 x ( 2 + 23 + ... + 259).
Vì A = 3 x ( 2 + 23 + ... + 259) nên A chia hết cho 3.
A= (2 +22 + 23) + (24 + 25 + 26) + ... + (258 + 259 + 260).
= 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).
= 2 x 7 + 24 x 7 + ... + 258 x 7.
= 7 x ( 2 + 24 + ... + 258).
Vì A = 7 x ( 2 + 24 + ... + 258) nên A chia hết cho 7.
A= (2 +22 + 23 + 24) + (25 + 26 + 27 + 28) + ... + (257 + 258 + 259 + 260).
= 2 x (1 + 2 + 22 + 23) + 25 x (1 + 2 + 22 + 23) + ... + 257 x (1 + 2 + 22 + 23).
= 2 x 15 + 25 x 15 + ... + 257 x 15.
= 15 x ( 2 + 24 + ... + 258).
Vì A = 15 x ( 2 + 24 + ... + 258) nên A chia hết cho 15.
Ta có: B= 3 + 33 + 35 + ... + 31991= (3 + 33 + 35) + (37+ 39 + 311 ) + ... + (31987 + 31989 + 31991).
= 3 x (1 + 32 + 34) + 37 x (1 + 32 + 34) + ... + 31987 x (1 + 32 + 34).
= 3 x 91 + 37 x 91 + ... + 31987 x 91= 3 x 7 x 13 + 37 x 7 x 13 + ... + 31987 x 7 x 13.
= 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7).
Vì B = 13 x ( 3 x 7 + 37 x 7 + ... + 31987 x 7) nên B chia hết cho 13.
B= (3 + 33 + 35 + 37) + ... + (31985 + 31987 + 31989 + 31991).
= 3 x (1 + 32 + 34 + 36) + ... + 31985 x (1 + 32 + 34 + 36).
= 3 x 820 + ... + 31985 x 820= 3 x 20 x 41 + ... + 31985 x 20 x 41.
= 41 x ( 3 x 20 + .. + 31985 x 20)
Vì B =41 x ( 3 x 20 + .. + 31985 x 20) nên B chia hết cho 41.
\(B=2+2^2+2^3+...+2^{60}\)
\(=2\left(1+2+2^2\right)+...+2^{58}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{58}\right)⋮7\)
Cho A = 1^1 + 2^5 + 3^9 + 4^13 + ... + 504^2013 + 505^2017. Chứng minh A chia hết cho 5. Giúp mk với
Ta có :
\(A=1+2^5+4^{13}+.....+504^{2013}+505^{2017}\)
\(A=1^{4.0+1}+2^{4.1+1}+3^{4.2+1}+....+505^{4503+1}+505^{4504+1}\)
Gọi các số nhân lên cùng 4 ở hàng số mũ là x
Xét các mũ ,ta có :
Chữ số tận cùng A sẽ là tổng của :
\(1+2+3+...+504+505\)
\(=\dfrac{\left(505+1\right).505}{2}=\dfrac{255530}{2}=127765\)
Tổng đó có chữ số tận cùng là 5
⇒⇒ Chữ số tận cùng của A là 5
Vậy chữ số tận cùng của A là 5
T=(3+32+33)+.....+(37+38+39)
T=3(1+3+32)+......+37(1+3+32)
T=3.13+...+37.13
T=13( 3+37) chia het cho 13
mk nha
Hinh nhu sai de rui ban