Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 2015+20152+20153+....+20152013+20152014+20152015
A= ( 2015+20152 )+ ( 20153+20154 )+..... + (20152012+20152013) + (20152014+20152015)
A= 2015. (1+2015)+ 20153 .(1+2015) +.....+ 20152012. (1+2015)+ 20152014. (1+2015)
A= 2015.2016 + 20153.2016 +......+ 20152012.2016 + 20152014.2016
A= 2016. ( 2015+ 20153 +.......+20152012 + 20152014)
=> A chia hết cho 2016
=> đpcm : điều phải chứng minh
\(ĐặtA=\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(2A=\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\)
\(2A-A=\left(\frac{3}{2}+\frac{4}{2^2}+...+\frac{2014}{2^{2012}}+\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2014}{2^{2013}}+\frac{2015}{2^{2014}}\right)\)
\(A=\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\)
\(2A=3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\)
\(2A-A=\left(3+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2011}}+\frac{1}{2^{2012}}-\frac{2015}{2^{2013}}\right)-\left(\frac{3}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2012}}+\frac{1}{2^{2013}}-\frac{2015}{2^{2014}}\right)\)
\(A=3+\frac{1}{2}-\frac{2015}{2^{2013}}-\frac{3}{2}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2015}{2^{2013}}-\frac{1}{2^{2013}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4030}{2^{2014}}-\frac{2}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{4032}{2^{2014}}+\frac{2015}{2^{2014}}\)
\(A=2-\frac{2017}{2^{2014}}< 2\)
=> đpcm
Bài này dễ thôi mà nhưng mình chỉ gợi ý thôi nhé! Bạn phải đổi phần mẫu số ra đã nhé ! *CỐ LÊN*
Ta có 9911 = 11 . 17 . 53 . Trong mỗi tích đều có các thừa số đó :
- Tích các số lẻ có chứa các số 11 ; 17 ; 53
- Tích các số chẵn có các số 22 ; 34 ; 106 lần lượt là bội của các số 11 ; 17 ; 53
=> Tổng hai tích chia hết cho 9911.
A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21
Ta có : A = 22011 + 22012 + 22013 + 22014 + 22015 + 22016
= (22011 + 22012) + (22013 + 22014) + (22015 + 22016)
= 22011(2 + 1) + 22013(2 + 1) + 22015(2 + 1)
= 3.22011 + 3.22011.22 + 3.22011.24
= 3.22011.(1 + 22 + 24)
= 3.22011.21 \(⋮\)21
=> A \(⋮\) 21 (đpcm)
A=22011+22012+22013+22014+22015+22016
A=22011.1+22011.2+22011.22+22011.23+22011.24+22011.25
A=22011.(1+2+22+23+24+25)
A=22011.(1+2+4+8+16+32)
A=22011.63
A=22011.3.21 chia hết cho 21
ai trả lời đúng mình **** cho