Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = \(\frac{1}{20}+\frac{1}{21}...+\frac{1}{199}+\frac{1}{200}\) ( có 181 phân số )
=> S > \(\frac{1}{200}+\frac{1}{200}+...+\frac{1}{200}+\frac{1}{200}\)
=> S > \(\frac{1}{200}.181\)
=> S > \(\frac{181}{200}\)> \(\frac{180}{200}\)= \(\frac{9}{10}\)
Vậy S > 9 / 10
Có \(\frac{18}{18+19+20}>\frac{18}{18+19+20+21}\)
\(\frac{19}{18+19+21}>\frac{19}{18+19+20+21}\)
\(\frac{20}{18+19+21}>\frac{20}{18+19+20+21}\)
\(\frac{21}{18+19+21}>\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18}{18+19+20+21}+\frac{19}{18+19+20+21}+\frac{20}{18+19+20+21}+\frac{21}{18+19+20+21}\)
=> \(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>\frac{18+19+20+21}{18+19+20+21}\)
=>\(\frac{18}{18+19+20}+\frac{19}{18+19+21}+\frac{20}{18+19+21}+\frac{21}{18+19+21}>1\)
=>M>1
Còn lại mình không biết, đúng thì tick nha
Ta có \(A=\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{39}\right)+\left(\frac{1}{40}+\frac{1}{41}+...+\frac{1}{59}\right)\)
\(A< \left(\frac{1}{20}+\frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(A< \frac{20}{20}+\frac{20}{40}\)
\(A< \frac{3}{2}\)
Ta xét : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{19}-\frac{1}{20}=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{19}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+....+\frac{1}{20}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{20}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{9}+\frac{1}{10}\right)\)
\(=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\)
Vì \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{20}\)
nên \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{19}-\frac{1}{20}=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+....+\frac{1}{20}\) ( đpcm )