Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(1+5+5^2\right)+\left(5^3+5^4+5^5\right)+\left(5^6+5^7+5^8\right)\)
\(B=31.1+5^3.31+5^6.31=31.\left(1+5^3+5^6\right)\)
Vậy B chia hết cho 31
Ta có :
A = 2 + 22 + ... + 22010
A = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 22009 + 22010 )
A = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 22009 . ( 1 + 2 )
A = 2 . 3 + 23 . 3 + ... + 22009 . 3
A = 3 . ( 2 + 23 + ... + 22009 ) \(⋮\)3
A = 2 + 22 + ... + 22010
A = ( 2 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 22008 + 22009 + 22010 )
A = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 22008 . ( 1 + 2 + 22 )
A = 2 . 7 + 24 . 7 + ... + 22008 . 7
A = 7 . ( 2+ 24 + ... + 22008 ) \(⋮\)7
B = 3 + 32 + ... + 32010
B = ( 3 + 32 ) + ... + ( 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)4
B = 3 + 32 + ... + 32010
B = ( 3 + 32 + 33 ) + ... + ( 32008 + 32009 + 32010 )
Làm tương tự chứng minh được B \(⋮\)13
a, \(A=2+2^2+...+2^{2010}\)
\(\Leftrightarrow A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(\Leftrightarrow A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(\Leftrightarrow A=2.3+2^3.3+...+2^{99}.3\)
\(\Leftrightarrow A=3\left(2+2^2+...+2^{99}\right)\)chia hết cho 3
b: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-2(2n+3) chia hết cho d
=>2 chia hết cho d
mà 2n+3 là số lẻ
nên d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Ta có :
\(B=\dfrac{36}{1.3.5}+\dfrac{36}{3.5.7}+\dfrac{36}{5.7.9}+...............+\dfrac{36}{25.27.29}\)
\(B=9\left(\dfrac{4}{1.3.5}+\dfrac{4}{3.5.7}+\dfrac{4}{5.7.9}+.............+\dfrac{4}{25.27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{3.5}+\dfrac{1}{3.5}-\dfrac{1}{5.7}+\dfrac{1}{5.7}-\dfrac{1}{7.9}+...........+\dfrac{1}{25.27}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{1.3}-\dfrac{1}{27.29}\right)\)
\(B=9\left(\dfrac{1}{3}-\dfrac{1}{783}\right)\)
\(B=9.\dfrac{1}{3}-9.\dfrac{1}{783}\)
\(B=3-\dfrac{9}{783}< 3\)
\(\Rightarrow B< 3\rightarrowđpcm\)