Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n\left(n^2-3n-1\right)+\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=\left(2n^3-2n^3\right)-\left(6n^2-n^2\right)-\left(2n+3n\right)-1+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
\(S=\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1\)
\(=2n^3-6n^2-2n+n^2-3n-1-2n^3+1\)
\(=-5n^2-5n=-5n\left(n+1\right)⋮5\)
Vậy \(\left(2n+1\right)\left(n^2-3n-1\right)-2n^3+1⋮5\)
Ta có: \(x^{8n}+x^{4n}+1=x^{8n}+2x^{4n}+1-x^{4n}=\left(x^{4n}+1\right)^2-\left(x^{2n}\right)^2\)
\(=\left(x^{4n}+x^{2n}+1\right)\left(x^{4n}-x^{2n}+1\right)=\left(x^{4n}+2x^{2n}+1-x^{2n}\right)\left(x^{4n}-x^{2n}+1\right)=\left[\left(x^{2n}+1\right)-\left(x^n\right)^2\right]\left(x^{4n}-x^{2n}+1\right)=\left(x^{2n}+1-x^n\right)\left(x^{2n}+1+x^n\right)\left(x^{4n}-x^{2n}+1\right)\)=> \(x^{8n}+x^{4n}+1⋮x^{2n}+x^n+1\left(\forall x\right)\)
Đề bài sai !
Vì: Nếu \(n=0\Rightarrow5^{2n+2}+2^{2n+1}=5^{2.0+2}+2^{2.0+1}\)
\(=5^2+2^1\)
\(=27\)không chia hết cho 11 !
sai cmnr