Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình chia thành hai phần a và b
a) Mọi số nguyên tố n lớn hơn 2 đều không chia hết cho 2 ---> n có dạng 2k+1 (n thuộc N, n> 0)
...Xét 2 TH :
...+n chẵn (k = 2n) ---> n = 2k+1 = 2.2n + 1 = 4n+1
...+ n lẻ (k = 2n-1) ---> n= 2k+1 = 2.(2n-1) + 1 = 4n-1
...Vậy n luôn có dạng 4n+1 hoặc 4n-1
b) Mọi số nguyên tố n lớn hơn 3 đều ko chia hết cho 3 ---> n có dạng 3k+1 hoặc 3k-1
...Nếu k lẻ thì n sẽ chẵn và nó ko phải là số nguyên tố (vì n > 3).
...Vậy k phải chẵn, k = 2n với n > 0 (để n > 3).Xét 2 TH :
...+ n = 3k+1 = 3.2n + 1 = 6n+1
...+ n = 3k-1 = 3.2n -1 = 6n - 1
...Vậy n luôn có dạng 6n+1 hoặc 6n-1.
Đề sai... VD nhá... 3 là snt. 23-1=7 có 2 ước 2<3... Vô lí...
Giải:
a) Mọi số nguyên tố p lớn hơn 2 đều không chia hết cho 2 ---> p có dạng 2k+1 (k thuộc N, k > 0)
...Xét 2 TH :
...+ k chẵn (k = 2n) ---> p = 2k+1 = 2.2n + 1 = 4n+1
...+ k lẻ (k = 2n-1) ---> p = 2k+1 = 2.(2n-1) + 1 = 4n-1
...Vậy p luôn có dạng 4n+1 hoặc 4n-1
b) Mọi số nguyên tố p lớn hơn 3 đều ko chia hết cho 3 ---> p có dạng 3k+1 hoặc 3k-1
...Nếu k lẻ thì p sẽ chẵn và nó ko phải là số nguyên tố (vì p > 3).
...Vậy k phải chẵn, k = 2n với n > 0 (để p > 3).Xét 2 TH :
...+ p = 3k+1 = 3.2n + 1 = 6n+1
...+ p = 3k-1 = 3.2n -1 = 6n - 1
...Vậy p luôn có dạng 6n+1 hoặc 6n-1.
Cách 2:
a) Mỗi số tự nhiên chia cho 4 có thể dư 0; 1;2;3
=> có thể có các dạng sau: 4n - 1; 4n ; 4n + 1 ; 4n + 2
Vì p là số nguyên tố nên p > 2 nên p lẻ => p không thể bằng 4n hoặc 4n + 2
Vậy p có thể có dạng 4n - 1 hoặc 4n + 1
b) Tương tự, mọi số tự nhiên đều có thể viết dạng: 6n - 2; 6n - 1; 6n ; 6n + 1; 6n + 2; 6n + 3
Vì p là số nguyên tố > 3 => p không chia hết cho 2 và 3
=> p không thể = 6n - 2; 6n; 6n + 2 ; 6n + 3
Vậy p có thể có dạng 6n - 1 hoặc 6n + 1
Khi chia một số tự nhiên A cho 6 thì ta có các số dư : 0,1,2,3,4,5.
Trường hợp số dư 0,2,3,4 ta có A \(⋮\)2 hoặc A \(⋮\)3 nên A là hợp số .
- Với trường hợp dư là 1 , thì A = 6n + 1
- Trường hợp dư 5 thì A = 6m + 5 = 6m + 6 - 1
= 6(m+1) -1
hay A = 6n - 1
Gọi (n^3+2n ; n^4+3n^2+1) là d => n^3+2n chia hết cho d và n^4+3n^2+1 chia hết cho d. =>n(n^3+2n) chia hết cho d hay n^4+2n^2 chia hết cho d. do đó (n^4+3n^2+1) - (n^4+2n^2) chia hết chod hay n^2 +1 chia hết cho d (1). => (n^2+1)(n^2+1) chia hết cho d hay n^4+2n^2+1 chia hết cho d. => (n^4+3n^2+1) ...
Bài 1 :
Ta có :
\(\frac{3n-5}{3-2n}=\frac{3n-5}{-\left(2n-3\right)}\)
Gọi \(ƯCLN\left(3n-5;3-2n\right)=d\)
\(\Rightarrow\)\(\hept{\begin{cases}3n-5⋮d\\-\left(2n-3\right)⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(3n-5\right)⋮d\\-3\left(2n-3\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n-10⋮d\\-6n+9⋮d\end{cases}}}\)
\(\Rightarrow\)\(\left(6n-10\right)+\left(-6n+9\right)⋮d\)
\(\Rightarrow\)\(\left(6n-6n\right)\left(-10+9\right)⋮d\)
\(\Rightarrow\)\(\left(-1\right)⋮d\)
\(\Rightarrow\)\(d\inƯ\left(1\right)\)
Mà \(Ư\left(1\right)=\left\{1;-1\right\}\)
\(\Rightarrow\)\(ƯCLN\left(3n-5;3-2n\right)=\left\{1;-1\right\}\)
Vậy \(\frac{3n-5}{3-2n}\) là phân số tối giản với mọi số nguyên n
Chúc bạn học tốt ~
1. Khi chia một số tự nhiên A lớn hơn 2 cho 4 thì ta được các số dư 0, 1, 2, 3 . Trường hợp số dư là 0 và 2 hai thì A là hợp số, ta không xột chỉ xột trường hợp số dư là 1 hoặc 3
Với mọi trường hợp số dư là 1 ta có A = 4 n ± 1
Với trường hợp số dư là 3 ta có A = 6 n ± 1
Ta có thể viết A = 4m + 4 – 1
= 4(m + 1) – 1
Đặt m + 1 = n, ta có A = 4n – 1
2. Khi chia số tự nhiên A cho 6 ta có các số dư 0, 1, 2, 3, 4, 5. Trường hợp số dư 0, 2, 3, 4. Ta có A chia hết cho 2 hoặc A chia hết cho 3 nên A là hợp số
Trường hợp dư 1 thì A = 6n + 1
Trường hợp dư 5 thì A = 6m + 5
= 6m + 6 – 1
6(m + 1 ) – 1
Đặt m + 1 = n Ta có A = 6n – 1