K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 8 2015

Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6

12 tháng 7 2021

Ta có: (2n-3)n-2n(n+2)=2n^3-3n-2n^3-4n

                                    =-7n chia hết cho 7

Vậy (2n-3)n-2n(n+2) chia hết cho 7 với mọi số nguyên n (đpcm)

3 tháng 9 2017

Bạn phân tích nhu mình vừa nãy thì sẽ có \(a=\frac{10^{2n}-1}{9}\) \(b=\frac{10^{n+1}-1}{9},c=\frac{6\left(10^n-1\right)}{9}\)

cộng tất cả vào ta sẽ có a+b+c+8 ( 8 =72/9) và bằng

\(\frac{10^{2n}-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\)

phân tích 10^2n = (10^n)^2

10^(n+1) = 10^n.10 và 6(10^n-1) thành 6.10^n-6 và cộng 72-1-1=70, ta được

\(\frac{\left(10^n\right)^2+10^n.10+6.10^n-6+70}{9}\)

=\(\frac{\left(10^n\right)^2+10^n.16+64}{9}\)

=\(\frac{\left(10^n+8\right)^2}{3^2}\)

=\(\left(\frac{10^n+8}{3}\right)^2\)

vì 10^n +8 có dạng 10000..08 nên chia hết cho 3 => a+b+c+8 là số chính phương

3 tháng 9 2017

bạn cho mik hỏi câu b thì b là số gồm n+1 c/s nào

a) Ta có: \(34^{2005}-34^{2004}\)

\(=17^{2005}\cdot2^{2005}-17^{2004}\cdot2^{2004}⋮17\)

b) Ta có: \(43^{2004}+43^{2005}\)

\(=43^{2004}\left(1+43\right)\)

\(=43^{2004}\cdot44⋮11\)

c) Ta có: \(27^3+9^5=3^9+3^{10}=3^9\left(1+3\right)=3^9\cdot4⋮4\)

16 tháng 7 2021

Câu d nữa bạn

4 tháng 10 2018
22 tháng 4 2018

Bài 1 :

Ta có :

a chia 3 dư 1 a=3k+1⇒a=3k+1

b chia 3 dư 2 b=3k1+2⇒b=3k1+2 (k;k1N)(k;k1∈N)

ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2ab=(3k+1)(3k1+2)=3k.k1+2.3k+3.k1+2

Mà 3k.k1+2.3k+3.k133k.k1+2.3k+3.k1⋮3

3k.k1+2.3k+3.k1+2⇒3k.k1+2.3k+3.k1+2 chia 3 dư 2

ab⇒ab chia 3 dư 2 đpcm→đpcm

Bài 2 :

Ta có :

n(2n3)2n(n+1)n(2n−3)−2n(n+1)
=2n23n2n22n=2n2−3n−2n2−2n
=5n5=−5n⋮5

n(2n3)3n(n+1)5⇒n(2n−3)−3n(n+1)⋮5 với mọi n

đpcm

22 tháng 4 2018

Bài 1: 

a=3n+1 

b= 3m+2 

a*b= 3( 3nm+m+2n ) + 2 số này chia 3 sẽ dư 2.

Bài 2: 

  n(2n-3)-2n(n+1) 

=2n^2-3n-2n^2-2n 

= -5n 

-5n chia hết cho 5 với mọi số nguyên n vì -5 chia hết cho 5 

vậy n(2n-3)-2n(n+1) chia hết cho 5