Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+......+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=>3A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+....+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\)
=> \(3A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+....+\frac{1}{3n-1}-\frac{1}{3n+2}\)
=>\(3A=\frac{1}{2}-\frac{1}{3n+2}\)
=> \(3A=\frac{\left(3n+2\right):2}{3n+2}-\frac{1}{3n+2}\)
=> \(3A=\frac{1,5.n}{3n+2}\)
=>\(A=\frac{1,5.n}{3n+2}.\frac{1}{3}=>A=\frac{1,5.n}{\left(3n+2\right).3}=\frac{1,5.n}{9n+6}\)
\(Hay\) \(A=\frac{1,5n:1,5}{\left(9n+6\right):1,5}=\frac{n}{9n:1,5+6:1,5}=\frac{n}{6n + 4} \left(đpcm\right)\)
\(\frac{1}{2.5}+\frac{1}{5.8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{3n}{2.\left(3n+2\right)}\)
\(=\frac{n}{2\left(3n+2\right)}\)
\(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+...+\dfrac{1}{3n-1}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{3n+2}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{3n+2}{6n+4}-\dfrac{2}{6n+4}\right)\)
\(=\dfrac{1}{3}.\dfrac{3n}{6n+4}\)
\(=\dfrac{n}{6n+4}\) ( đpcm )
Vậy...
Bài 1:
\(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{\left(2x-2\right).2x}\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(x-1\right).x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x-1}-\frac{1}{x}\right)\)\(=\frac{11}{48}\)
\(\frac{1}{4.}.\left(1-\frac{1}{x}\right)=\frac{11}{48}\)
\(1-\frac{1}{x}=\frac{11}{48}:\frac{1}{4}\)
\(1-\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{x}=1-\frac{11}{12}\)
\(\frac{1}{x}=\frac{1}{12}\)
Vậy x= 12
Bài 2 :
Xét vế trái ta có :
\(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{\left(3n-1\right).\left(3n+2\right)}\)
\(=\frac{1}{3}.\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right)\)
\(=\frac{1}{3}.\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3n+2}\right)\)
\(=\frac{1}{3}.\frac{1}{2\left(3n+2\right)}=\frac{n}{2\left(3n+2\right)}\)
VẾ TRÁI ĐÚNG BẰNG VẾ PHẢI .ĐẲNG THỨC ĐÃ CHỨNG TỎ LÀ ĐÚNG
cHÚC BẠN HỌC TỐT ( -_- )
\(C=\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{\left(3n+2\right)\left(3n+5\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{\left(3n+2\right)\left(3n+5\right)}\right]\)
\(=\frac{1}{3}\left[\frac{5-2}{2.5}+\frac{8-5}{5.8}+\frac{11-8}{8.11}+...+\frac{\left(3n+5\right)-\left(3n+2\right)}{\left(3n+2\right)\left(3n+5\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{3n+2}-\frac{1}{3n+5}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+5}\right]\)
\(=\frac{1}{3}.\frac{3n+5-2}{2\left(3n+5\right)}=\frac{3n+3}{3.2\left(3n+5\right)}=\frac{n+1}{2\left(3n+5\right)}\)
a)\(VT=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+...+\frac{1}{\left(3n-1\right)\left(3n+2\right)}\)
\(=\frac{1}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+...+\frac{3}{\left(3n-1\right)\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{3n-1}-\frac{1}{3n+2}\right]\)
\(=\frac{1}{3}\left[\frac{1}{2}-\frac{1}{3n+2}\right]=\frac{1}{3}\left[\frac{3n+2}{2\left(3n+2\right)}-\frac{2}{2\left(3n+2\right)}\right]\)
\(=\frac{1}{3}\cdot\frac{3n}{6n+4}=\frac{n}{6n+4}=VP\)
b) Ta có: \(\frac{5}{3.7}+\frac{5}{7.11}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}\)
\(=\frac{5}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+...+\frac{4}{\left(4n-1\right)\left(4n+3\right)}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{4n-1}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{1}{3}-\frac{1}{4n+3}\right)\)
\(=\frac{5}{4}\left(\frac{4n+3}{12n+9}-\frac{3}{12n+9}\right)\)
\(=\frac{5}{4}.\frac{4n}{12n+9}\)
\(=\frac{5n}{12n+9}\)
( sai đề )
Đặt A=1/2.5+1/5.8+...+1/(3n-1).(3n+2)
=>3A=3/2.5+3/5.8+...+3/(3n-1).(3n+2)
=>3A=1/2-1/5+1/5-1/8+...+1/3n-1-1/3n+2
=>3A=1/2-1/3n+2
=>3A=(3n+2-2)/[2.(3n+2)]
=>3A=3n/6n+4
=>A=3n/6n+4/3
=>A=n/6n+4
210