K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2023

\(x\left(x-a\right)+x\left(x-b\right)+x\left(x-c\right)=0\)

\(x^2-ax+x^2-bx+x^2-cx=0\)

\(3x^2-\left(a+b+c\right)x=0\)

\(\Delta=\left(a+b+c\right)^2\ge0\forall a,b,c\)

=> phương trình luôn có nghiệm với mọi a,b,c

10 tháng 7 2021

Kẻ OH vuông góc với xy suy ra OH ≤ OA . Mặt khác A nằm trong đường tròn (O;R) nên OA ≤ R

10 tháng 7 2021

cảm ơn bạn nhé

 

 

a: \(\Leftrightarrow\left(a+1\right)^2-4a\ge0\)

hay \(\left(a-1\right)^2>=0\)(luôn đúng)

b: \(VT=a^2c^2+2abcd+b^2d^2+a^2d^2-2abcd+b^2c^2\)

\(=a^2\left(c^2+d^2\right)+b^2\left(c^2+d^2\right)\)

\(=\left(c^2+d^2\right)\left(a^2+b^2\right)=VP\)

6 tháng 1 2022

Cảm ơn  chị rất nhiều

23 tháng 1 2019

bạn lên học 24h nha , ở đó giáo viên sẽ giải cho bạn 

17 tháng 3 2020

bài này chỉ cần áp dụng bất đẳng thức cô -si là được thôi

ta có \(\frac{a^2+b^2}{\left|a-b\right|}=\frac{\left(a-b\right)^2+2ab}{\left|a-b\right|}=\left|a-b\right|+\frac{12}{\left|a-b\right|}\)

áp dụng bất đẳng thức cô -si  ta được :

\(\left|a-b\right|+\frac{12}{\left|a-b\right|}\ge2\sqrt{\left|a-b\right|+\frac{12}{\left|a-b\right|}}=4\sqrt{3}\)(dpcm)