K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2018

Giả sử \(\sqrt{n}+\sqrt{n+4}\in Z^+\)(1)

\(\Rightarrow\left(\sqrt{n}+\sqrt{n+4}\right)^2=2n+4+2\sqrt{n^2+4n}\in Z\)

\(\Leftrightarrow\sqrt{n^2+4n}\in Z\)

Đặt \(\sqrt{n^2+4n}=a\left(a\in N^+\right)\)

\(\Rightarrow a^2=n^2+4n\)

\(\Rightarrow a^2+4=n^2+4n+4=\left(n+2\right)^2\)

\(\Rightarrow\left(n+2-a\right)\left(n+2+a\right)=4\)(*)

Mà (n+2-a)+(n+2+a)=2(n+2) là số nguyên chẵn

\(\Rightarrow n+2-a;n+2+a\) là hai số nguyên chẵn

=>(*) vô nghiệm

=>(1) mâu thuẫn =>đpcm

NV
21 tháng 8 2021

Với mọi n nguyên thì \(B=3n+2\) luôn chia 3 dư 2

Mà mọi số chính phương khi chia 3 đều dư 0 hoặc 1

\(\Rightarrow\) B không phải là SCP

\(\Rightarrow\) A không phải số nguyên

1 tháng 3 2018

Tui chơi bang bang trao đổi acc không

26 tháng 2 2022

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

21 tháng 8 2021

Để A \(\inℤ\)thì 3n + 2 là số chính phương 

mà (3n + 2) : 3 dư 2 

=> 3n + 2 không là số chính phương 

=> \(A\notinℤ\forall n\inℕ^∗\)

14 tháng 1 2017

Ta có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(< \left(1+\frac{\sqrt{n+1}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Áp dụng vào bài toán ta được

\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)

\(\RightarrowĐPCM\)

22 tháng 11 2016

cttq đi bạn