Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài bạn sai rồi, giá trị tuyệt đối của x cộng giá trị tuyệt đối của y luôn luôn lớn hơn hoặc bằng giá trị tuyệt đối của x cộng y và dấu bằng xảy ra khi x=y. Bạn nên xem kĩ lại câu hỏi hoặc là không chứng minh được trường hợp đó.
Mình ví dụ cho bạn hiểu
\(a\ge0\Rightarrow\left|a\right|=a\)
Ví dụ : | 5 | = 5 ; | 0 | = 0 ; ...
a < 0 => | a | = -a
Ví dụ : | -6 | = -(-6) = 6 ; | -99 | = -(-99) = 99
Tóm lại GTTĐ của một số luôn lớn hơn hoặc bằng 0 ._.
Em mới lớp 6,chưa hiểu lắm,nhưng em nghĩ là:
GTTĐ của 1 số là khoảng cách từ số đó đến 0 trên trục số.
=>Nếu cùng là số âm,số nào nhỏ hơn thì GTTĐ của nó lớn hơn.
tk em/mk nha.
-chúc ai tk mk/em học giỏi và may mắn-
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)