K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2020

c, Giả sử \(C⋮169\Rightarrow4C=\left(2n+5\right)^2+39⋮169\Rightarrow4C⋮13\)

\(\Rightarrow\left(2n+5\right)^2⋮13\Rightarrow\left(2n+5\right)^2⋮169\)

\(\Rightarrow\left(2n+5\right)^2+39\) không chia hết cho 169

\(\Leftrightarrow4C\) không chia hết cho 169 (Vô lí)

\(\Rightarrowđpcm\)

19 tháng 10 2020

a, Giả sử \(A⋮121\Rightarrow4A=4n^2+12n+9+11=\left(2n+3\right)^2+11⋮11\)

\(\Rightarrow\left(2n+3\right)^2⋮11\Rightarrow\left(2n+3\right)^2⋮121\)

\(\Rightarrow\left(2n+3\right)^2+11\) không chia hết cho 121

\(\Leftrightarrow4A\) không chia hết cho 121 (Vô lí)

\(\Rightarrowđpcm\)

b, Giả sử \(B⋮49\Rightarrow4B=\left(2n+3\right)^2+7⋮49\)

\(\Rightarrow\left(2n+3\right)^2⋮7\Rightarrow\left(2n+3\right)^2⋮49\)

\(\Rightarrow\left(2n+3\right)^2+7\) không chia hết cho 49

\(\Leftrightarrow4B\) không chia hết cho 49 (Vô lí)

\(\Rightarrowđpcm\)

11 tháng 1 2020

E mới hk lớp 8 nên chỉ thử có j thông cảm!!

Giả sử tồn tại số tự nhiên n thỏa mãn \(n^2+3n+5⋮121\)

=> \(4\left(n^2+3n+5\right)⋮121\)

=> \(\left(4n^2+12n+9\right)+11⋮121\)

=> \(\left(2n+3\right)^2+11⋮121\)

Vì \(4\left(n^2+3n+5\right)⋮11\)  ( vì \(121⋮11\)) và \(11⋮11\)

=> \(\left(2n+3\right)^2⋮11\)

=> \(\left(2n+3\right)^2⋮121\)  ( vì 11 là số nguyên tố)

=> \(\left(2n+3\right)^2+11\) không chia hết cho 121  ( vì 11 không chia hết cho 121)

hay \(4\left(n^2+3n+5\right)\) không chia hết cho 121

=> \(n^2+3n+5\) ko chia hết cho 121 ( vì 4 và 121 nguyên tố cùng nhau)   ( đpcm)

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7

sai r bạn ơi

 

 

 

6 tháng 1 2015

Bài 1: 

a) P=(a+5)(a+8) chia hết cho 2

Nếu a chẵn => a+8 chẵn=> a+8 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Nếu a lẽ => a+5 chẵn => a+5 chia hết cho 2 => (a+5)(a+8) chia hết cho 2

Vậy P luôn chia hết cho 2 với mọi a

b) Q= ab(a+b) chia hết cho 2

Nếu a chẵn => ab(a+b) chia hết cho 2

Nếu b chẵn => ab(a+b) chia hết cho 2

Nếu a và b đều lẽ => a+b chẵn => ab(a+b) chia hết cho 2

Vậy Q luôn chia hết cho 2 với mọi a và b

 

10 tháng 7 2015

bài 3:n5- n= n(n-1)(n+1)(n2+1)=n(n-1)(n+1)(n2+5-4)=n(n-1)(n+1)(n-2)(n+2)+5n(n-1)(n+1).

Vì: n(n-1)(n+1)(n-2)(n+2) là 5 số nguyên liên tiếp thì chia hết cho 10                   (1)

ta lại có: n(n+1) là 2 số nguyên liên tiếp nên chia hết cho 2

=> 5n(n-1)n(n+1) chia hết cho 10                                                                     (2)

Từ (1) và (2) => n5- n chia hết cho 10

8 tháng 12 2023

Bài 1:

cho a2 + b2 ⋮ 3 cm: a ⋮ 3; b ⋮ 3

Giả sử a và b đồng thời đều không chia hết cho 3

      Vì a không chia hết cho 3 nên  ⇒ a2 : 3 dư 1

      vì b không chia hết cho b nên   ⇒ b2 : 3 dư 1

⇒ a2 + b2 chia 3 dư 2 (trái với đề bài)

Vậy a; b không thể đồng thời không chia hết cho ba

     Giả sử a ⋮ 3; b không chia hết cho 3 

      a ⋮ 3 ⇒  a 2 ⋮ 3 

   Mà  a2 + b2 ⋮ 3 ⇒ b2 ⋮ 3 ⇒ b ⋮ 3 (trái giả thiết) 

Tương tự b chia hết cho 3 mà a không chia hết cho 3 cũng không thể xảy ra 

Từ những lập luận trên ta có:

   a2 + b2 ⋮ 3 thì a; b đồng thời chia hết cho 3 (đpcm)