Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: chứng minh \(S\ge6\)
Ta có:
\(S=\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\left(\frac{a}{b}-2+\frac{b}{a}\right)+\left(\frac{b}{c}-2+\frac{c}{b}\right)+\left(\frac{a}{c}-2+\frac{c}{a}\right)+6\)
\(=\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2+\left(\sqrt{\frac{b}{c}}-\sqrt{\frac{c}{a}}\right)^2+\left(\sqrt{\frac{a}{c}}-\sqrt{\frac{c}{a}}\right)^2+6\ge6\)
\(\Rightarrow\)ĐPCM
Đây nè k cho mình nha:
Ta có \(\frac{a+b}{c}>\frac{a+b}{a+b+c}\)
\(\frac{b+c}{a}>\frac{b+c}{a+b+c}\)
\(\frac{a+c}{b}>\frac{a+c}{a+b+c}\)
Suy ra \(S>\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}+\frac{a+c}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
Vậy S > 2
a)
Cách 1: Do \(a,b,c\inℕ^∗\)nên \(a,b,c\ge1\). Do đó:
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge6\)
Cách 2 (không thông dụng lắm, mình tự nghĩ ra)
Dự đoán: \(a=b=c\)
Do đó: \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2a}{a}+\frac{2a}{a}+\frac{2a}{a}=\frac{a\left(2+2+2\right)}{a}=6\) (do a = b = c nên ta thế b, c = a) (đpcm)
b) Từ kết quả a) ta dễ thấy GTNN của S là 6
Ta có : \(\frac{a}{b}=\frac{b}{c}\)
\(\Rightarrow\left(\frac{a}{b}\right)^2=\left(\frac{b}{c}\right)^2=\frac{ab}{bc}\)(Áp dụng tính chất a = b => a2 = b2 = ab)
\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{c^2}=\frac{ab}{bc}\)
\(\Rightarrow\frac{a^2+b^2}{b^2+c^2}=\frac{a}{c}\)(Trừ khử b trên tử và dưới mẫu còn a/c)
Ta có :
\(\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b}{b+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}>\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=1\)\(\Rightarrow A>1\)( 1 )
Lại có :
\(\frac{a}{a+b+c}< \frac{a+d}{a+b+c+d}\)
\(\frac{b}{b+c+d}< \frac{b+a}{a+b+c+d}\)
\(\frac{c}{c+d+a}< \frac{c+b}{a+b+c+d}\)
\(\frac{d}{d+a+b}< \frac{d+c}{a+b+c+d}\)
\(\Rightarrow\frac{a}{a+b+c}+\frac{b}{b+c+d}+\frac{c}{c+d+a}+\frac{d}{d+a+b}< \frac{a+d}{a+b+c+d}+\frac{a+b}{a+b+c+d}+\frac{c+b}{a+b+c+d}+\frac{d+c}{a+b+c+d}=2\)
\(\Rightarrow A< 2\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)A không phải là số tự nhiên ( vì 1 < A < 2 )
Ta thấy:
\(\frac{a+d}{a+b+c+d}>\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
\(\frac{b+a}{a+b+c+d}>\frac{b}{b+c+d}>\frac{b}{a+b+c+d} \)
\(\frac{c+b}{a+b+c+d}>\frac{c}{c+d+a}>\frac{c}{a+b+c+d}\)
\(\frac{d+c}{a+b+c+d}>\frac{d}{d+a+b}>\frac{d}{a+b+c+d}\)
Do đó:
\(\frac{a+d}{a+b+c+d}+\frac{b+a}{a+b+c+d}+\frac{c+d}{a+b+c+d}+\frac{d+c}{a+b+c+d}>A\)
VÀ \(A>\)\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}\)
\(\Rightarrow2>A>1\)
\(\Rightarrow\)A không là số tự nhiên với a,b,c,d > 0
Vậy A không là số tự nhiên với a,b,c,d > 0
Sử dụng bất đẳng thức Bunhiacopxki dạng phân thức và khi đó ta được:
\(\frac{a^5}{a^2+ab+b^2}+\frac{b^5}{b^2+bc+c^2}+\frac{c^5}{c^2+ca+a^2}\ge\)
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\)
\(\Rightarrow\)Ta cần chỉ ra được:
\(\frac{\left(a^3+b^3+c^3\right)^2}{a^3+b^3+c^3+a^2b+ab^2+b^2c+bc^2+c^2a+ca^2}\ge\frac{a^3+b^3+c^3}{3}\)
Hay: \(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Dễ thấy: \(a^3+b^3\ge ab\left(a+b\right);b^3+c^3\ge bc\left(b+c\right);c^3+a^3\ge ca\left(c+a\right)\)
Cộng theo vế các bất đẳng thức trên ta được:
\(2\left(a^3+b^3+c^3\right)\ge a^2b+ab^2+b^2c+bc^2+c^2a+ca^2\)
Vậy bất đẳng thức đã được chứng minh.
\(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\)
Xét Hiệu : \(\frac{a}{b}.\frac{a}{c}-\left(\frac{a}{b}+\frac{a}{c}\right)\)
\(=\frac{a^2}{bc}-\frac{ac+ab}{bc}\)
\(=\frac{a^2}{bc}-\frac{a\left(c+b\right)}{bc}\)
\(=\frac{a^2}{bc}-\frac{a^2}{bc}\) \(\left(c+b=a\right)\)
\(=0\)
\(\Rightarrow\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (ĐPCM)
Ta có:
\(VT=\frac{a}{b}.\frac{a}{c}=\frac{aa}{bc}=\frac{a^2}{bc}\)
\(VP=\frac{a}{b}+\frac{a}{c}=\frac{ac}{bc}+\frac{ab}{bc}=\frac{a\left(c+b\right)}{bc}=\frac{aa}{bc}=\frac{a^2}{bc}\)
\(\Rightarrow VT=VP\)
Vậy nếu \(c+b=a\) thì \(\frac{a}{b}.\frac{a}{c}=\frac{a}{b}+\frac{a}{c}\) (Đpcm)
Ta có: a/(a+b) > a/(a+b+c)
b/(b+c) > b/(b+c+a)
c/(c+a) > c/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > [a/(a+b+c)] + [b/(a+b+c)] + [c/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] > 1
Lại có: a/(a+b) < (a+b)/(a+b+c)
b/(b+c) < (b+c)/(b+c+a)
c/(c+a) < (c+a)/(c+a+b)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [(a+b)/(a+b+c)] + [(b+c)/(a+b+c)] + [(c+a)/(a+b+c)]
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < [2.(a+b+c)]/(a+b+c)
=> [a/(a+b)] + [b/(b+c)] + [c/(c+a)] < 2
Vậy .....
a,b,c là gì?
a,b,c nó ko cho,mình phải tự tìm