Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
ta có: a/b = c/d
=> a/c = b/d = (a+b)/(c+d) = (a-b)/(c-d)
=> (a+b)/(a-b) = (c+d)/(c-d) ( đpcm)
#
Ta có:\(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Vì \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
Theo t/c dãy tỉ số=nhau:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\) (hoán vị trung tỉ)
Vậy.......
Từ \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=>\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=>\frac{a+b}{a-b}=\frac{c+d}{c-d}\)
A/B=C/D <=>A/C=B/D
THEO TÍNH CHẤT CỦA DÃY TỈ SỐ = NHAU TA CÓ
A/C=B/D=A+B/C+D=A-B/C-D
=>A+B/C+D=A-B/C-D
=>A+B/A-B=C+D/C-D =>ĐPCM
Đặt \(\frac{a}{b}=\frac{c}{d}=k\) khi đó: \(\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta tính được:
\(\frac{a+b}{a-b}=\frac{bk+b}{bk-b}=\frac{k+1}{k-1}\)
\(\frac{c+d}{c-d}=\frac{dk+d}{dk-d}=\frac{k+1}{k-1}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)