K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Tứ giác ABCD là một hình bình hành \( \Leftrightarrow \left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\)

\( \Leftrightarrow \) Hai vecto \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) cùng hướng và AD = BC.

\( \Leftrightarrow \overrightarrow {BC}  = \overrightarrow {AD} .\) (đpcm)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Tứ giác ABCD là hình bình hành 

\( \Leftrightarrow \left\{ \begin{array}{l}
AB // DC\\
AB = DC
\end{array} \right.\)

Mà \(AB // DC \Leftrightarrow \overrightarrow {AB}  ,\, \overrightarrow {DC} \) cùng phương, do đó cùng hướng.

\( \Leftrightarrow \left\{ \begin{array}{l}
\overrightarrow {AB} , \overrightarrow {DC} \,{\rm{ cùng hướng}}\\
AB = DC
\end{array} \right.\)

\(\Leftrightarrow \overrightarrow {AB}  = \overrightarrow {DC} \)

Vậy tứ giác ABCD là hình bình hành khi và chỉ khi \(\overrightarrow {AB}  = \overrightarrow {DC} \).

30 tháng 3 2017

Ta chứng minh hai mệnh đề:

- Khi = thì ABCD là hình bình hành.

Thật vậy, theo định nghĩa của vec tơ bằng nhau thì:

= =

cùng hướng.

cùng hướng => cùng phương, suy ra giá của chúng song song với nhau, hay AB // DC (1)

Ta lại có = => AB = DC (2)

Từ (1) và (2), theo dấu hiệu nhận biết hình bình hành, tứ giác ABCD có một cặp cạnh song song và bằng nhau nên nó là hình bình hành.

- Khi ABCD là hình bình hành thì =

Khi ABCD là hình bình hành thì AB // CD. Dễ thấy, từ đây ta suy ra hai vec tơ cùng hướng (3)

Mặt khác AB = CD => = (4)

Từ (3) và (4) suy ra = .

19 tháng 5 2017

A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).

19 tháng 5 2017

Vectơ

\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)

=> Tứ giác FEHG là hình bình hành

=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)

Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)

=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)

Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)

Vậy tứ giác GHCD là hình bình hành.

12 tháng 5 2017

A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).

2 tháng 8 2019

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

Giải bài 3 trang 7 sgk Hình học 10 | Để học tốt Toán 10

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = (\overrightarrow {AB}  + \overrightarrow {AD} ) + \overrightarrow {CE} \) (tính chất giao hoán)

Mà theo quy tắc hình bình hành ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = \overrightarrow {AC}  + \overrightarrow {CE}  = \overrightarrow {AE} \)

Vậy \(\overrightarrow {AB}  + \overrightarrow {CE}  + \overrightarrow {AD}  = \overrightarrow {AE} \) với điểm E bất kì.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)