Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{2^2}>0\)
\(\frac{1}{3^2}>0\)
................
\(\frac{1}{100^2}>0\)
\(\Rightarrow A>0\left(1\right)\)
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
...................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)
\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow A< 1-\frac{1}{100}< 1\)
\(\Rightarrow A< 1\left(2\right)\)
Từ (1) và (2) \(\Rightarrow0< A< 1\)
Vậy A ko là STN.
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{100^2}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}< 1\)
Vậy A không phải là một số tự nhiên
Bài 1 :
a.Ta có 1 - 1/2 + 1/3 - 1/4 + ... + 1/199 - 1/200
=(1+1/2+1/3+1/4+.....+1/199+1/200) -2(1/2+1/4+1/6+......+1/200)
=(1+1/2+1/3+1/4+.....+1/199+1/200) -(1+1/2+1/3+.....+1/100)
=1/101+1/102+....+1/199+1/200
b.Tổng quát bạn tự làm nhé
Bài 1 :
Ta giải bài toán tổng quát :chứng minh rằng : với n là số tự nhiên lớn hơn 1 , ta luô có :
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2n-1}\)\(-\frac{1}{2n}\)
\(=\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\)
Thật vậy ,kí hiệu \(S2n=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2n}\)thì ta có :
\(1-\frac{1}{2}+\frac{1}{3}-...-\frac{1}{2n}=S2n-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2n}\right)\)
\(=S2n-\left(1+\frac{1}{2}+...+\frac{1}{n}\right)=\frac{1}{n+1}+\frac{1}{n+2}+..+\frac{1}{2n}\)
Bài toán ở câu a chỉ là trường hợp riêng của bài toán trên với \(n=100\)
Bài 2 :
Đặt \(S=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{15}\left(1\right)\)
\(T=1.3.5.7...15\)( Tích các số lẻ bé hơn hoặc bằng 15 )
Nhân 2 vế của ( 1 ) với 2^2 .T ta được :
\(S.2^2T=\frac{2^2T}{2}+\frac{2^2T}{3}+\frac{2^2T}{4}+...+\frac{2^2T}{15}\left(2\right)\)
Dễ thấy tất cả các số hạng ở vế phải của ( 2) ,trừ số hặng \(\frac{2^2T}{2^3}\)đều là số tự nhiên ,suy ra vế phải có tổng không phải là số tự nhiên .Do đó S không phải là số tự nhiên
Chúc bạn học tốt ( -_- )
các bạn xem mình làm có đúng không ??
Tổng S gồm 15 phân số từ \(\frac{1}{2}\) đến \(\frac{1}{16}\) . Mẫu chung của cá phân số là :
BCNN( 2 ; 3 ; 4 ; .... ; 15 ; 16 ) = 24.32.5.7.11.13 = 5.7.9.11.13.16 .
Phân số \(\frac{1}{16}\) sau khi quy đồng mẫu là : \(\frac{1}{16}=\frac{5.7.9.11.13}{5.7.9.11.13.16}\) là một phân số có tử lẻ và mẫu chẵn
Tử của 14 phân số còn lại sau khi quy đồng là số chẵn . Vậy tổng của 15 phân số đã cho là 1 phân số
có tử lẻ , mẫu chẵn , nên không là số tự nhiên
A = 1/1x2 + 1/2x3 + 1/3x4 + ........... + 1/15x16
A = 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .............. + 1/15 - 1/16
A = 1 - 1/16
A = 15/16
Chúc bạn học giỏi
Tao cá cái thằng k đúng cho thằng lớp 5 kia nó học lớp 4
Sở dĩ là điều bài thiếu điều kiện để có thể kết luận rằng đây có phải là STN hay ko
Nên tốt nhất là mấy thằng cấp dưới ko hiểu gì thì đừng có k/l lung tung và cũng bỏ cái tính thể hiện đê
A = \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\)
A = \(\frac{6}{12}+\frac{4}{12}+\frac{3}{12}\)
A = \(\frac{13}{12}\)
Vì 13 \(⋮̸\)12 nên A không phải là số tự nhiên
Vậy A không phải là số tự nhiên
Có :
A = 1/2 +1/3 +1/4
= 13/12
Mà 13/12 ko phải là số tự nhiên
=> tổng trên ko phải là số tự nhiên
Tk mk nha
Xét 1/2 + 1/3 + 1/4
1/2 + 1/4 = (2+4)/(2.4) = 2.3/[(3-1)(3+1)] = 2.3/(3^2 - 1) > 2.3/3^2 = 2/3 = 2.(1/3)
---> 1/2+1/3+1/4 > 3.(1/3) = 1 (1)
Lại xét 1/5 + 1/6 + ... + 1/9 + ... + 1/13
1/8+1/10 = (8+10)/(8.10) = 2.9/(9^2 - 1) > 2.9/9^2 = 2/9 = 2.(1/9)
Tương tự cm được 1/7+1/11 > 2.(1/9) ; 1/6+1/12 > 2.1/9; ...; 1/5+1/13 > 2.1/9
---> 1/5+1/6+ ... + 1/13 > 9.(1/9) = 1 (2)
Tg tự, cm được 1/14+1/15+ ... + 1/38 > 25.(1/25) = 1 (3)
(1),(2),(3) ---> A> 3 (*)
Mặt khác
1/2 + 1/3 + 1/6 = 1 (4)
1/4 + 1/5 + 1/20 = 1/2 (5)
1/7 + 1/8 + 1/9 < 3.(1/7) = 3/7 (6)
1/10+1/11+ ...+1/14 < 5.(1/10) = 1/2 (7)
1/15+1/16+ ...+1/19 < 5.(1/15) = 1/3 (8)
1/21+1/22+ ...+1/26 < 6.(1/21) = 2/7 (9)
1/27+1/28+ ...+1/50 < 24.(1/27) = 8/9 (10)
Cộng (4),(5),(6),(7), (8),(9),(10) ---> a < 2 + 5/7 + 11/9 < 2 + 7/9 + 11/9 = 4 (**)
Từ (*) và (**) ---> 3 < a < 4 ---> a ko phải là số tự nhiên.
Ta có:\(A=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}>0\)
Vì: \(\frac{1}{2^2}<\frac{1}{1.2}\)
\(\frac{1}{3^2}>\frac{1}{2.3}\)
\(\frac{1}{4^2}>\frac{1}{3.4}\)
..........
\(\frac{1}{2012^2}>\frac{1}{2011.2012}\)
\(\Rightarrow A<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2011.2012}\)
\(\Rightarrow A<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
\(\Rightarrow A<1-\frac{1}{2012}\)
\(\Rightarrow A<1\)
Vì A>0;A<1
=>A không phải số tự nhiên
=>ĐPCM
Quy đồng A lên thì tử số chia hết cho 20112 còn mẫu số không chia hết cho 20112 vì có \(\frac{1}{2011^2}\) khi quy đồng thì tử không chia hết cho 20112
Vậy A không phải là số tự nhiên
A=1/2+1/3+1/4
A=5/6+1/4
A=13/12
Vậy A không phải số tự nhiên