K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

Giả sứ tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ

=>a+b=c, trong đó a,c là số hữu tỉ,b là số vô tỉ=>b=c-a mà a,c là số hữu tỉ=>c-a là số hữu tỉ=>b là số hữu tỉ(trái với đề bài)

=>Giả sứ sai=> đpcm

30 tháng 11 2019

giải hộ tớ bài ở trên

30 tháng 11 2019

Giả sử tổng của một số hữu tỉ và một số vô tỉ là một số hữu tỉ.

Gọi a+b=c trong đó a,c là số hữu tỉ và b là số vô tỉ ⇒ b=c-a mà a và c là các số hữu tỉ ⇒ a-c là số hữu tỉ ⇒ b là số hữu tỉ(trái giả thiết). Vậy giả sử sai⇒ đpcm

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.Câu 2. Chứng minh các bất đẳng thức:a) (a + b)2 ≤ 2(a2 + b2)b) (a + b + c)2 ≤ 3(a2 + b2 + c2)c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.Câu 6. Tìm giá...
Đọc tiếp

Câu 1. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 2. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 3. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

Câu 4. Chứng minh rằng: [x] + [y] ≤ [x + y].

Câu 5. Tìm giá trị nhỏ nhất của: A = x2 + y2 biết x + y = 4.

Câu 6. Tìm giá trị lớn nhất của: A = xyz(x + y)(y + z)(z + x) với x, y, z ≥ 0; x + y + z = 1.

Câu 7. Xét xem các số a và b có thể là số vô tỉ không nếu:

a) ab và a/b là số vô tỉ.

b) a + b và a/b là số hữu tỉ (a + b ≠ 0)

c) a + b, a2 và b2 là số hữu tỉ (a + b ≠ 0)

Câu 8. Cho a, b, c > 0. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

Câu 9. Chứng minh rằng [2x] bằng 2[x] hoặc 2[x] + 1

Câu 10. Cho số nguyên dương a. Xét các số có dạng: a + 15 ; a + 30 ; a + 45 ; … ; a + 15n. Chứng minh rằng trong các số đó, tồn tại hai số mà hai chữ số đầu tiên là 96.

--------------------------làm đầy đủ nha ^_^--------------------------------------------------------

0
25 tháng 6 2019

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7= m/n 
⇒ 7 = m²/n² 
⇒ m² =7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

~ Mik ko có 2k5 nha , Hok tốt ~
#Gumball

Giả sử phản chứng √7 là số hữu tỉ ⇒ √7 có thể biểu diễn dưới dạng phân số tối giản m/n 
√7 = m/n 
⇒ 7 = m²/n² 
⇒ m² = 7n² 
⇒ m² chia hết cho n² 
⇒ m chia hết cho n (vô lý vì m/n là phân số tối giản nên m không chia hết cho n) 
Vậy giả sử phản chứng là sai. Suy ra √7 là số vô tỉ.

19 tháng 4 2020

giả sử \(\sqrt{1+\sqrt{2}}=m\) ( m là số hữu tỉ )

\(\Rightarrow\sqrt{2}=m^2-1\)nên \(\sqrt{2}\)là số hữu tỉ ( vô lí )

vậy ...

b) giả sử \(m+\frac{\sqrt{3}}{n}=a\)( a là số hữu tỉ ) thì \(\frac{\sqrt{3}}{n}=a-m\Rightarrow\sqrt{3}=n\left(a-m\right)\)nên là số hữu tỉ ( vô lí )

vậy ....