K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

Ta có: \(A=7+7^2+7^3+7^4+...+7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\)

          \(A=\left(7+7^2+7^3+7^4\right)+...+\left(7^{4n-3}+7^{4n-2}+7^{4n-1}+7^{4n}\right)\)

         \(A=7\left(1+7+7^2+7^3\right)+...+7^{4n-3}\left(1+7+7^2+7^3\right)\)

         \(A=7.400+7^5.400+...+7^{4n-3}.400\)

        \(A=400.\left(7+7^5+..+7^{4n-3}\right)\)luôn chia hết cho 400

17 tháng 1 2017

A=7+72+74+74+...+74n-3+74n-2+74n-1+74n

          A=(7+72+73+74)+...+(74n-3+74n-2+74n-1+74n)

         A=7(1+7+72+73)+...+74n-3(1+7+72+73)

         A=7.400+75.400+...+74n-3.400

        A=400.(7+75+..+74n-3)luôn chia hết cho 400

22 tháng 12 2017

\(A=\left(-7\right)+\left(-7\right)^2+......+\left(-7\right)^{2006}+\left(-7\right)^{2007}\)
\(=\left[\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3\right]+\left[\left(-7\right)^4+\left(-7\right)^5+\left(-7\right)^6\right]+.......\) \(+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}+\left(-7\right)^{2007}\right]\)
\(=\left(-7\right)\left[1+\left(-7\right)+\left(-7\right)^2\right]+......+\left(-7\right)^{2005}\left[1+\left(-7\right)+\left(-7\right)^2\right]\)
\(=\left(-7\right).43+\left(-7\right)^3.43+......+\left(-7\right)^{2005}.43\)
\(=43\left[\left(-7\right)+\left(-7\right)^3+.....+\left(-7\right)^{2005}\right]\).
Suy ra A chia hết cho 43.


22 tháng 12 2017

A=(-7+-7^2+-7^3)+.....+(-7^2005+-7^2006+-7^2007)

A=-7(1+-7+-7^2)+.....+-7^2005(1+-7+-7^2)

A=-7.43+....+-7^2005.43\(⋮\)43\(\Rightarrow\)dpcm

2 tháng 9 2020

a) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮3\)

=> \(d⋮3\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮3\\b⋮3\end{cases}}\)

b) Gọi ƯCLN(a ; b) = d

=> \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮d\\b^2⋮d\end{cases}}\Rightarrow a^2+b^2⋮d\)

mà theo đề ra \(a^2+b^2⋮7\)

=> \(d⋮7\)

Mà \(\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮7\\b⋮7\end{cases}}\)

7 tháng 6 2017

\(n^4+7\left(7+2n^2\right)\)

\(=n^4+14n^2+49\)

\(=\left(n^2\right)^2+2.7.n^2+7^2\)

\(=\left(n^2+7\right)^2\)

Vì n là số nguyên nẻ nên n có dạng 2k + 1 với k là số nguyên

\(\Rightarrow\left(n^2+7\right)^2=\left[\left(2k+1\right)^2+7\right]^2\)

\(=\left[\left(4k^2+4k+1\right)+7\right]^2\)

\(=\left[4k\left(k+1\right)+8\right]^2\)

Ta thấy \(\hept{\begin{cases}k\left(k+1\right)⋮2\forall k\in Z\\4⋮4\end{cases}}\) nên \(4k\left(k+1\right)⋮8\forall k\in Z\)

\(\Rightarrow4k\left(k+1\right)+8⋮8\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮8^2\forall k\in Z\)

\(\Rightarrow\left[4k\left(k+1\right)+8\right]^2⋮64\forall k\in Z\)

Hay \(n^4+7\left(7+2n^2\right)⋮64\forall n\)là số nguyên lae (đpcm)

9 tháng 7 2015

a)\(8^7-2^{18}=\left(2^3\right)^7-2^{18}=2^{21}-2^{18}=2^{17}\left(2^4-2\right)=2^{17}.14\)

suy ra 8^7-2^18 chia hết cho 14

9 tháng 7 2015

a) 8^7 = (2^3)^7 = 2^21

Vậy 8^7-2^18 = 2^21 - 2^18 = 2^18(2^3-1)= 2^18 x 7 chia hết cho 7 (ĐPM)

b) 5^5 - 5^4 + 5^3 = 5^3(5^2-5+1) = 5^3 x 21 = 5^3 x 3 x 7 chia hết cho 7 (ĐPCM)

c) 7^6 + 7^5 - 7^4 = 7^4 x ( 7^2+7-1) = 7^4 x 55 = 7^4 x 5 x 11 chia hết cho 11 (ĐPCM)

d) Ta có: 24^54 = 8^54 x 3^54 = (2^3)^54 x 3^54 = 2^162 x 3^54

72^63 = 8^63 x 9^63 = (2^3)^63 x (3^2)^63 = 2^189 x 3^126

Vậy 24^54 x 5^24 x 2^10 = 5^24 x 2^10 x 2^162 x 3^54 = 2^172 x 3^54 x 5^24

Rõ ràng  2^172 x 3^54 x 5^24 không chia hết cho 2^189 x 3^126 nên 24^54 x 5^24 x 2^10 không chia hết cho 72^63 (bài này mình thấy lạ, nếu sai ở đâu các bạn chỉ ra nha)

e) \(3^{n+2}-2^{n+2}+3^n+2^n=3^n.9-2^n.4+3^n+2^n=3^n\left(9+1\right)-2^n\left(4-1\right)=10.3^n-2^n.3\)

Rõ ràng 10.3^n - 2^n.3 không chia hết cho 10 (bạn ấn máy tính thử, mình gặp bài này rồi, chắc đề sai)