K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2017

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

Trong phép chia cho 1000 có 1000 số dư là 0,1,2,3,...,999.

Xét 1001 số: 3,32,33,...,31001 thì tồn tại 2 số có cùng số dư trong phép chia cho 1000.

Gọi 2 só đó là 3a và 3b (1=<a=<b=<1001). 3a-3b chia hết cho 1000

=> 3b.(3a-b-1) chia hết cho 1000.

Ta có: (3b,1000)=1 => 3a-b-1 chia hết cho 1000 => 3a-b có tậm cùng là 0001.

28 tháng 12 2020

l don't no

23 tháng 12 2015

nếu lấy A=2.3.4...2015.2016.2017, thì A chia hết cho 2,3,...2015,2016,2017

và dãy 2015 só bắt đầu từ A+2 đều là hợp số :

A+2;A+3;...;A+2015;A+2015;A+2017

bởi vì A+2 chia hết cho 2

A+3 chia hết cho 3

.......

A+2016 chia hết 2016

A+2017 chia hết 2017 ( ĐPCM)

tick nhé

20 tháng 11 2016

Lập dãy số :35;36;37;.....;3106

Ta có:100 số có dạng :00;01;02;...;99 .Theo nguyên tắc Đi-rich-lê , có 101 số có dạng 2 chữ số tận cùng nên có 2 số có 2 chữ số tận cùng giống nhau và hiệu của chúng chia hết cho 100.

Gỉa sử tồn tại hai số 13m và 13n (m>n , m,n \(\in N\))

Ta có:(13m-13n)chia hết cho 100

\(\Rightarrow13^n\left(13^{m-n}-1\right)\)chia hết cho 100

Mà ƯCLN(13,100)=1 nên 13n không chia hết cho 100

\(\Rightarrow13^{m-n}-1\)chia hết cho 100 . Nên 13m-n tận cùng là 01

Vây tồn tại một lũy thừa của 13 có 2 chữ số tận cùng là 01