K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

a, TÍch hai số chẵn lt chia hết cho 8

Gọi hai số chẵn đó là 2a và 2a + 2 thì tích của chúng là:

2a[2a + 2] = 4a2 + 4a = 4[a2 + a] = 4[a[a+1]]

Mà a[a+1] là tích hai số nguyên liên tiếp nên chia hết cho hai và có dạng 2h

Vậy 2a[2a + 2] = 4.2h = 8h \(⋮8\)

Kết luận: ..................

b. Tích ba số chẵn lt chia hết cho 48

Gọi ba số chẵn lt là 2a, 2a+2 và 2a + 4 thì tích chúng là:

2a[2a + 2][2a + 4] = 8a[a+1][a+2]

Mà a[a + 1][a + 2] là tích ba số nguyên liên tiếp nên chia hết cho 3; lại có ít nhất 1 số chẵn nên chia hết cho 2. Mà ƯCLN của 3 và 2 là 1 nên a[a + 1][a + 2] chia hết cho 2.3 = 6 nên có dạng 6k

=> 2a[2a + 2][2a + 4] = 8.6k = 48k chia hết cho 48

Kết luận:....................

c. Tích 4 số chẵn liên tiếp chia hết cho 384

384=27.3

Gọi 4 số chẵn lt là : 2a, 2a +2, 2a+4 và 2a+6

Tích chúng là:

2a[2a+2][2a+4][2a+6] = 16a[a+1][a+2][a+3]

                                = 24.a[a+1][a+2][a+3]

Vậy bây giờ ta cần chứng minh a[a+1][a+2][a+3] chia hết cho 23.3

Như chứng minh trên, a[a+1][a+2] luôn chia hết cho 3 nên a[a+1][a+2][a+3] cũng chia hết cho 3 

Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp. Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4, số còn lại chia hết cho 2 => tích 4 số tự nhiên liên tiếp chia hết cho 8.

Mà ƯCLN của 3 và 8 = 1 nên a[a+1][a+2][a+3] chia hết cho 24 hay 23.3

Vậy 2a[2a+2][2a+4][2a+6] chia hết cho 384.

Kết luận:........................

d, D = 10n + 18n - 1 chia hết cho 27

D = 10n + 18n - 1 

= 10n - 1 + 18n

= 999...99 + 18n [n chữ số 9]

= 9.11....111 + 9.2n [n chữ số 1]

= 9 [11111...11 + 2n]

Vậy ta cần cm [11111...11 + 2n] chia hết cho 3

Nếu n chia hết cho 3 thì 11111...11 + 2n chia hết cho 3

Nếu n chia 3 dư 1 thì 1111...11 chia 3 dư 1; 2n chia 3 dư 2 => 11111...11 + 2n chia hết cho 3

Nếu n chia 3 dư 1 thì 1111...11 chia 3 dư 2; 2n chia 3 dư 1 => 11111...11 + 2n chia hết cho 3

Vậy 11111...11 + 2n chia hết cho 3 và có dạng 3k

=> 9 [11111...11 + 2n] = 9.3k = 27k chia hết cho 27

=> D = 10n + 18n - 1 chia hết cho 27 => ĐPCM

12 tháng 7 2021

bạn hãy áp dụng công thức này mà làm: k.(k+1)....(k+n) luôn chia hết cho 1,2,...,n+1 biết k và n là số nguyên

gọi 2 số chẵn liên tiếp đó là: 2k,2k+2

2k.(2k+2)=4k(k+1) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2) chia hết cho 8

gọi 3 số chẵn liên tiếp đó là: 2k,2k+2,2k+4

2k.(2k+2)(2k+4)=8k(k+1)(k+2) mà k(k+1) chia hết cho 2 suy ra 2k.(2k+2)(2k+4) chia hết cho 16 (1)

k(k+1)(k+2) chia hết cho 3 suy ra 8k(k+1)(k+2) chia hết cho 3 suy ra 2k.(2k+2)(2k+4) chia hết cho 3 (2)

từ (1),(2) suy ra 2k.(2k+2)(2k+4) chia hết cho 48 do (16,3)=1

câu c, tương tự vậy

ASDWE RHTYJNHWSAVFGB

7 tháng 11

흘르럏스헣 허줖

22 tháng 10 2017

a) Gọi 2 số chẵn liên tiếp là: 2k; 2k+2

    Theo đề bài, ta có: 2k(2k+2) chia hết cho 8

    Để 2k(2k+2) chia hết cho 8 thì 2k(2k+2) phải chia hết cho 2 (vì  8 = 2.2.2)

    Mà 2k(2k+2) chiia hết cho 2 vì có 1 thừa số 2 trong biểu thức

=> 2k(2k+2) chia hết cho 8

    

30 tháng 10 2015

A)Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
            Ta có:

2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
=>k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=>4k(k+1) chia hết cho 8(ĐPCM)

30 tháng 10 2015

Gọi hai số chẵn liên tiếp là 2k; 2k+2(k:số tự nhiên) 
Ta có: 2k.(2k+2) =4k^2+4k =4k.(k+1) 
Vì tích hai số tư nhiên liên tiếp luôn chia hết cho 2 
Nên k(k+1) chia hết cho 2 
=> 4k(k+1) chia hết cho 2*4=8 

=> 4k(k+1) chia hết cho 8

3 tháng 11 2015

a. Hai số chẵn liên tiếp có dạng là 2k và 2(k+1) với k là số nguyên .
Tích hai số này là 4k(k+1) . Ta có k(k+1) luôn chia hết cho 2 => 4k(k+1) luôn chia hết cho 8 => đpcm

b . Gọi ba số chẵn liên tiếp là 2a,2a + 2 , 2a + 4 ( a \(\in\) N ) Xét tích :
                2a.(2a + 2).(2a + 4) = 8a(a + 1)(a + 2)

  Chứng minh rằng a(a + 1)(a + 2) chia hết cho 3 và chia hết cho 2.
c. Ta có 384 = 2\(^7.3\)

Tích 4 số chẵn liên tiếp sẽ có dạng : \(2^4.n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\)
Ta cần c/m tích \(n.\left(n+1\right).\left(n+2\right).\left(n+3\right)\) chia hết cho \(2^3.3\) hay chia hết cho 8 và cho 3( vì 8,3 là số nguyên tố cùng nhau)

L-I-K-E nha ! Mình đã bỏ thời gian ra giải cho bạn rồi đấy

3 tháng 11 2015

a. Gọi 2 số chẵn liên tiếp đó là 2a ; 2a + 2 
=> 2a.(2a+2)chia hết cho 2 (1)
2a. (2a+2) = 2a.2a + 2a .2 = 4.a.a+4.a=4.(a.a+a) 
=> 2a(2a+2) chia hết cho 4 (2)
từ (1) và (2)  2a.(2a+2) chia hết cho 8
Mấy bài kia tương tự

6 tháng 8 2023

a) 3 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right)\)

Ta có \(\Rightarrow n\left(n+1\right)\left(n+2\right)\) trong 3 số sẽ có 1 số chia hết cho 3

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮3\Rightarrow dpcm\)

b) 5 số nguyên liên tiếp là \(n;\left(n+1\right);\left(n+2\right);\left(n+3\right);\left(n+4\right)\)

mà trong 5 số này có số chia hết cho 2;4;3;5 và 2.4=8

⇒ Tích 5 số này chia hết cho 3,5,8 \(\left[UCLN\left(3;5;8\right)=1\right]\)

⇒ Tích 5 số này chia hết cho tích của 3,5,8

mà \(3.5.8=120\)

\(\Rightarrow dpcm\)

 

6 tháng 8 2023

c) 3 số chẵn liên tiếp là \(2n;2n+2;2n+4\)

Ta có \(2n\left(2n+2\right)\left(2n+4\right)\)

\(=2.2.2n\left(n+1\right)\left(n+2\right)\)

\(=8n\left(n+1\right)\left(n+2\right)⋮8\left(1\right)\)

Ta lại có  \(\left\{{}\begin{matrix}n\left(n+1\right)\left(n+2\right)⋮3\\n\left(n+1\right)⋮2\end{matrix}\right.\)

\(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow8n\left(n+1\right)\left(n+2\right)⋮48\)

\(\Rightarrow dpcm\)

29 tháng 7 2016

a) Gọi 4 số tự nhiên chẳn liên tiếp là a ;  a+2 ; a+4 ; a+6

Theo đề bài ta có:

\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)\)

\(=a+a+2+a+4+a+6=4a+12\)

Vì 4a chia hết cho 4 và 12 chia hết 4.

\(\Rightarrow4a+12\)chia hết cho 4.

Vậy tổng của 4 số tự nhiên chẵn liên tiếp  là một số chia hết cho 4.

b) Gọi 5 số tự nhiên chẵn liên tiếp là: a ; a+2 ; a+4 ; a+6 ; a+8

Theo đề bài ta có:

\(a+\left(a+2\right)+\left(a+4\right)+\left(a+6\right)+\left(a+8\right)\)

\(=a+a+2+a+4+a+6+a+8=5a+20\)

Vì 5a chia hết chia 5 và 20 cũng chia hết cho 5.

\(\Rightarrow5a+20\)chia hết cho 5.

Vậy tổng của 5 số tự nhiên chẵn liên tiếp  là một số chia hết cho 5.

29 tháng 7 2016

a) Gọi 4 số liên tiếp là a , (a+1), (a+2) , (a+3)

suy ra tổng của 4 sồ liên tiếp là :

a+a+1+a+2+a+3 = 4a+ 4 + 1
 

1/                                          Bài giải

Tích của 4 số tự nhiên liên tiếp thì chắc chắn có 2 số chẵn liên tiếp.
Trong 2 số chẵn liên tiếp chắc chắn có 1 số chia hết cho 4=> số còn lại chia hết cho 2
=> Tích 4 số tự nhiên liên tiếp chia hết cho 8. ﴾1﴿
Trong 4 số tự nhiên liên tiếp chắc chẵn có 1 số chia hết cho 3 ﴾2﴿
Từ ﴾1﴿ và ﴾2﴿ => Tích 4 số tự nhiên liên tiếp chia hết cho 3 và 8.
Mà 3 và 8 nguyên tố cùng nhau => Tích 4 số tự nhiên liên tiếp chia hết cho 3.8
=>Tích 4 số tự nhiên liên tiếp chia hết cho 24

2/                                       Bài giải

Vì trong 4 số tự nhiên chẵn có ít nhất 1 số chia hết cho 4
Và 2 số còn lại chia hết cho 2
=> Chia hết cho 2 x 2 x 4 = 16
Mà trong 3 số đó phải có 1 số chia hết cho 3
= > Tích chia hết cho : 3 . 16 = 48
=> Tích của 3 số tự nhiên chẵn liên tiếp thì chia hết cho 48.

3/                                      Bài giải

‐ tập hợp con không chứa phần tử nào: tập rỗng => có 1 tập hợp
‐ tập hợp con có 1 phần tử là : {a}; {b}; {c} ; {d} => có 4 tập hợp
‐ tập hợp có 2 phần tử là: {a;b}; {a;c}; {a;d}; {b;c}; {b;d}; {c;d}; => có 6 tập hợp
‐ tập hợp có 3 phần tử là: {a;b;c}; {a;b;d} ; {a;c;d}; {b;c;d} => có 4 tập hợp
‐ tập hợp có 4 phần tử là chính A = {a;b;c;d} => có 1 tập hợp
Vậy có tất cả là 1 + 4 + 6 + 4 + 1 = 16 tập hợp

18 tháng 8 2017

3/Các tập hợp con của A là : 

{a},{b},{c}

{a;b},{a;c},{b;c}

{a;b;c}

k mình nha