Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ba số nguyên dương liên tiếp lần lượt là n , n+1 , n+2 (\(n\in Z+\))
Ta có : \(n\left(n+1\right)\left(n+2\right)=\left(n^2+n\right)\left(n+2\right)=n^3+2n^2+n^2+2n=n^3+3n^2+2n\)
Mặt khác : \(n^3< n^3+3n^2+2n< n^3+3n^2+3n+1\)
\(\Rightarrow n^3< n^3+3n^2+2n< \left(n+1\right)^3\)(1)
Vì n là số nguyên dương nên từ (1) ta có \(n\left(n+1\right)\left(n+2\right)\) không là lập phương của một số tự nhiên.
G/s 3 số nguyên dương đó là: \(a;a+1;a+2\) với \(a\inℕ\)
Ta có: \(a\left(a+1\right)\left(a+2\right)=a^3+3a^2+2a\)
Xét: \(a^3+3a^2+2a>a^3\)
Mặt khác: \(a^3+3a^2+2a< a^3+3a^2+3a+1=\left(a+1\right)^3\)
=> \(a^3< a^3+3a^2+2a< \left(a+1\right)^3\)
Mà \(a^3;\left(a+1\right)^3\) là 2 số lập phương liên tiếp
=> \(a^3+3a^2+2a\) không là lập phương của 1 số tự nhiên
=> đpcm
a)Goi day so la a; a+1; a+2; ...; a+n
Dem tung so cua day so tren chia cho n thi co 1 so chi het cho n
Goi so do la a+k (k thuoc N va k>=1 va k <=n)
=> (a+1)(a+2)...(a+k)...(a+n-1)(a+n) chia het cho n
b)Tong cua n so nguyen lien tiep khong chia het cho n vi gia su n=6 thi 1+2+3+4+5+6=21 khong chia het cho 6