Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\left(\frac{2}{ab}-\frac{2}{a\left(a+b\right)}-\frac{2}{b\left(a+b\right)}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2-\frac{2\left(a+b\right)-2b-2a}{ab\left(a+b\right)}}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|=VP\)
Áp dụng tính M: \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
\(M=999.\sqrt{\frac{1}{999^2}+\frac{1}{1^2}+\frac{1}{\left(999+1\right)^2}}+\frac{999}{1000}\)
\(M=999.\left(\frac{1}{1}+\frac{1}{999}-\frac{1}{1000}\right)+\frac{999}{1000}\)
\(M=999+1-\frac{999}{1000}+\frac{999}{1000}=1000\)
Vậy M=1000.
đầu bài phải là: cmr: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)chì bn???
Giải:
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}-2.\left(\frac{b+a-a-b}{ab.\left(a+b\right)}\right)}\)
\(=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}-2.\left(\frac{1}{a.\left(a+b\right)}+\frac{1}{b.\left(a+b\right)}-\frac{1}{ab}\right)}\)
\(=\sqrt{\left(\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
=> đpcm
AD: \(\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}=\left|1+999-\frac{999}{1000}\right|+\frac{999}{1000}\)
\(=1000-\frac{999}{1000}+\frac{999}{1000}=1000\)
- Gỉa sử \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\left(\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\right)^2\)
=> \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}+\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}\)
=> \(\frac{2}{ab}-\frac{2}{b\left(a+b\right)}-\frac{2}{a\left(a+b\right)}=0\)
=> \(\frac{a+b}{ab\left(a+b\right)}-\frac{a}{ab\left(a+b\right)}-\frac{b}{ab\left(a+b\right)}=0\)
=> \(\frac{a+b-a-b}{ab\left(a+b\right)}=\frac{0}{ab\left(a+b\right)}=0\) (Luôn đúng )
Vậy ....
- Áp dụng : \(M=\sqrt{1+999^2+\frac{999^2}{1000^2}}+\frac{999}{1000}\)
=> \(M=\sqrt{1+999^2+\frac{999^2}{\left(1+999\right)^2}}+\frac{999}{1000}\) ( với \(a=1,b=999\) )
=> \(M=1+999-\frac{999}{1000}+\frac{999}{1000}=1000\)
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
a, dk \(x\ge0.x\ne1\)
\(\left(\frac{1+\sqrt{x}+1-\sqrt{x}}{2\left(1-x\right)}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)=\(\left(\frac{1}{1-x}-\frac{x^2+1}{1-x^2}\right)\left(\frac{x+1}{x}\right)\)
=\(\left(\frac{1+x-x^2-1}{1-x^2}\right)\left(\frac{x+1}{x}\right)=\frac{x\left(1-x\right)\left(x+1\right)}{x\left(1-x\right)\left(1+x\right)}=1\)
phan b,c ban tu lam not nhe dai lam mk ko lam dau mk co vc ban rui
Ta có:
\(1+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\)
\(1+y^2=xy+yz+xz+y^2=\left(y+z\right)\left(x+y\right)\)
\(1+z^2=xy+yz+xz+z^2=\left(x+z\right)\left(y+z\right)\)
Thay vào A được:
\(P=x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}+y\sqrt{\frac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(y+z\right)\left(x+y\right)}}\)\(+z\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(x+z\right)\left(y+z\right)}}\)
\(=x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)
\(=xy+xz+xy+yz+xz+zy\)
\(=2\left(xy+yz+xz\right)\)
\(=2\)(do xy+yz+xz=1)
=>Đpcm
Dạng toán này rất nhiều bạn hỏi rồi: thay \(xy+yz+zx=1\) vào các căn thức rồi phân tích đa thức thành nhân tử.
a) Ta có : \(1+x^2=xy+yz+zx+x^2=x\left(x+y\right)+z\left(x+y\right)=\left(x+y\right)\left(z+x\right)\)
b) \(\Sigma\left(x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\right)=\Sigma\left(x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right).\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\right)\)
\(=\Sigma\left(x\left(y+z\right)\right)=xy+xz+xy+yz+zx+zy=2\left(xy+yz+zx\right)=2\)